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Abstract

This study evaluates techniques to identify high-quality teachers. Since tenure restricts

dismissals of experienced teachers, schools must predict productivity and dismiss those

expected to perform ineffectively prior to tenure receipt. Many states rely on evalua-

tion scores to guide these personnel decisions without considering other dimensions of

teacher performance. I use predictive models to rank teachers based on expected value-

added and summative ratings. I then simulate revised personnel decisions and test for

changes in average retained teacher performance. In this exercise, I adjust two factors

that impact the quality of the predictions: the number of predictors and the length

of the pretenure period. Both factors impact the precision of the predictions, though

extended pretenure periods also negatively impact selection into teaching. I estimate

optimal weights on each performance measure to maximize measures of teacher quality

using a range of utility parameters. These improvements are a product of using addi-

tional information (value-added) rather than advanced algorithms, as OLS regressions

and advanced machine learning techniques produce similar gains. In comparison, pre-

diction models that extend the pretenure period beyond one year do not provide enough

additional information to significantly improve average retained teacher performance

unless dismissal rates increase dramatically.
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1 Introduction

Public schools seek to retain high-quality teachers to improve student achievement. However,

teacher tenure restricts dismissals of experienced educators. Prior to tenure receipt, schools

must predict productivity and dismiss those expected to perform ineffectively.1 While these

predictions could incorporate multiple dimensions of performance, 17 states rely on eval-

uations based on classroom observations without including objective measures of student

growth (Ross & Walsh, 2019). The remaining states place most weight on classroom obser-

vations to generate their overall ratings. Evaluations capture characteristics that are distinct

from value-added, such as classroom management and professionalism. Without considering

all metrics, schools may be ignoring important information when making these choices.

Even if schools use all available dimensions of performance, each annual metric only

provides a noisy signal of quality. Identifying the optimal pretenure period length is critical to

providing more reliable information about teacher ability, while still attracting high-quality

educators through compensating differentials associated with tenure.

In this paper, I use teacher-student linked administrative data from the New Jersey

Department of Education (NJDOE) to evaluate three questions. First, can districts improve

average retained teacher quality by supplementing evaluations with value-added? Second,

are these improvements a product of additional information or sophisticated algorithms?

Third, does extending the pretenure period improve average retained teacher performance?

To evaluate the returns to utilizing additional information and longer pretenure periods,

I use predictive models relying on ordinary least squares (OLS) regressions. These models

use early career teaching performance to identify which teachers will be most effective in

the long-run. I then identify optimal weights on value-added and summative ratings that

maximize measures of teacher quality using a range of plausible utility parameters.

To conduct this analysis, I calculate value-added using a lagged test score model. The

NJDOE provides annual summative ratings, which are based on a combination of supervisor

1 Schools may also improve performance through professional development opportunities and support.
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classroom observations and student growth. These ratings2 serve as the sole determinant of

performance-based personnel decisions in New Jersey. Relative to the New Jersey bench-

mark, I increase the weight on value-added and record the change in average retained teacher

performance. I predict subsequent productivity based on previous performance. Using these

predictions, I simulate revised personnel decisions that dismiss the bottom 10% of teach-

ers, which approximately matches current pretenure turnover rates.3 I measure the retained

teachers’ subsequent value-added and ratings to compare the models. This study explores

two factors that impact predictions: the number of performance measures and the length of

the pretenure period.

Similar to Kleinberg et al. (2017), this analysis relies on imputed data. I compare the sub-

sequent performance of teachers retained using the current system to that of teachers retained

using rankings based on the revised prediction models. Since I do not observe the subse-

quent performance of teachers who leave the profession, I must impute their performance

and assume that unobserved characteristics do not bias this prediction. While Kleinberg

et al. (2017) rely on quasi-random assignment to strict and lenient judges to evaluate this

selection-on-observables assumption, I leverage district dismissal residuals. Districts retain

some discretion when dismissing low-performing teachers, so I compare districts with higher

dismissal rates conditional on summative ratings to districts with lower dismissal rates. If

high-dismissal districts select on unobserved characteristics, imputations relying on these

teachers would overpredict performance in low-dismissal districts. However, this test shows

no evidence of prediction bias.

Using these assumptions, I then explore the returns to supplementing summative ratings

with value-added when using 10% dismissal rates. By incorporating value-added rather

than following current policies that only consider ratings, districts can increase subsequent

average value-added by 0.01 student test score standard deviations, as well as the diversity

of the teacher labor force without causing a statistically significant decline in ratings. This

2 I use the terms “summative rating” and “rating” interchangeably throughout the paper.
3 The pretenure turnover rate is 13%, though I cannot separate voluntary from involuntary turnover.
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improvement equates to a present value gain of $2,520 per student (Chetty et al., 2014),

which is nearly 12 times larger than the costs associated with the productivity decline at

tenure receipt (Ng, 2022). These improvements stem from using additional information

(value-added), as I generate similar gains when using advanced machine learning techniques.

In this analysis, I provide optimal weights on each performance measure to maximize teacher

quality using a range of utility parameters. By using additional measures of performance,

the proposed models provide a virtually costless method to improve average retained teacher

quality.

Next, I reestimate the predictive models when adjusting the pretenure period. At current

turnover rates of 10%, extending the pretenure period beyond one year does not generate

statistically significant improvements in average teacher quality. Although the magnitude

of the point estimates suggest similar gains to using additional data, the lack of statistical

significance shows that these improvements are inconsistent. I find that teacher performance

approximately follows a normal distribution, so the bottom decile lies in the far left tail. In

this region, quality is so widely dispersed that even noisy annual estimates often correctly

classify these teachers. Thus, longer pretenure periods provide little additional information.

At the same time, extending the pretenure period reduces compensating differentials. In

comparison, higher dismissal rates allow extended pretenure periods to generate significant

improvements in average teacher performance. Since more teachers are clustered near the

middle of the distribution, even a little bit of noise could result in teachers being misclassified

and dismissed. Consequently, additional pretenure years only provide valuable information

when ranking teachers near the middle of the distribution.

This paper contributes to the literature by estimating the returns to using additional

information (value-added) and longer pretenure periods. I use value-added and summative

ratings to make these predictions because previous work finds other characteristics, such as

educational attainment and licensure test scores, are not correlated with subsequent teacher

value-added (Hanushek, 1997; Buddin & Zamarro, 2009; Chingos & Peterson, 2011). Prior
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research finds that performance measure weights play a critical role in the distribution of

retained teacher proficiency rates (Steinberg & Kraft, 2017). Other work predicts subse-

quent teacher performance using evaluation data with both novice and experienced teachers

(Harris & Sass, 2014; Winters & Cowen, 2013; Chalfin et al., 2016; Mihaly et al., 2013).

Since the returns to experience vary throughout a teacher’s career (Kraft & Papay, 2015;

Wiswall, 2013; Hanushek & Rivkin, 2006), predictions relying on experienced teachers may

be inapplicable to novices. Using a rich dataset in a populous state, I restrict my analysis

to teachers at the beginning of their careers. Previously, this restriction was infeasible be-

cause most datasets have too few novice teachers. In addition, prior work often relied on

value-added or principal surveys as proxies for current retention decisions. In comparison,

my study uses the actual rankings based on administrative summative rating data. Since

this dataset provides a large sample of novice teachers, as well as the actual metrics used to

inform personnel decisions (rather than low-stakes survey data), my paper directly addresses

tenure receipt decisions.

This study also contributes to research regarding optimal teacher dismissal policies.

Staiger and Rockoff (2010) argue that schools should screen candidates based on performance

in their first few years. My paper extends the argument by demonstrating one technique

to select high-quality teachers based on this early career performance. Other research has

considered the impact of different factors on average retained teacher performance, such as

introducing performance pay and increasing dismissal rates (Rothstein, 2015; Neal, 2011).

2 Data and Policy Context

Summative ratings from 2014 to 2018 measure performance using a weighted average of

Teacher Practice, Student Growth Objectives (SGOs), and median Student Growth Per-

centiles (mSGPs).4 In Teacher Practice, supervisors observe several classes using an NJDOE

4 In Appendix Section A.1, I discuss the implementation of this evaluation system.
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approved rubric.5 These rubrics evaluate various teaching competencies, such as lesson

planning, classroom management, and professionalism. Administrators and teachers in each

district collaborate to design their own SGOs based on state standards. The SGOs measure

student growth based on the percentage of students improving their scores. Grades 4 to 8

ELA and grades 4 to 7 math teachers rely on mSGPs, which measure score growth on state

assessments. The mSGPs differ from value-added because they only account for previous

test scores rather than a variety of student, classroom, and school characteristics.6

Table A1 shows the weighting schemes for 2014 and 2017–2018 (first two columns), as well

as 2015–2016 (last two columns).7 Summative ratings primarily rely on Teacher Practice with

some weight placed on student growth. The odd columns record the weights for subjects that

partially rely on state tests. The even columns show the weights for other subjects. Based

on these weights, teachers receive a summative rating between 1.00 and 4.00. These ratings

place teachers into one of four categories with minimum thresholds included in parentheses:

ineffective (1.00), partially effective (1.85), effective (2.65), and highly effective (3.50).8

While Table A1 provides the actual weights, the “effective” weights depend on the dis-

tribution of scores in each component. Teacher Practice and mSGPs approximately follow

normal distributions with a wide range of possible scores, though SGO scores are concen-

trated near perfect scores (State of New Jersey Department of Education, 2014, 2015). Given

the limited dispersion of SGO scores and their low weight in Table A1, mSGPs and Teacher

Practice scores have a greater impact on the variability of summative ratings across teachers.

In New Jersey, the Teacher Effectiveness and Accountability for the Children of New

Jersey (TEACHNJ) Act defines teacher retention criteria. According to TEACHNJ, sum-

mative ratings dictate tenure receipt and job security. Teachers must earn two effective or

5 “Teacher Practice Evaluation Instruments” (2019) contains the full list of approved evaluation instru-
ments, including the widely-used Danielson Framework.

6 Betebenner (2011) provides a detailed description of the Student Growth Percentile methodology.
7 In 2015 and 2016, the NJDOE placed less weight on mSGPs to give educators time to acclimate to

the new PARCC assessments (Shulman, 2016).
8 Ideally, I would separate the ratings into Teacher Practice, SGOs, and mSGPs. However, the data

only include combined summative ratings from 1.00 to 4.00.
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highly effective ratings to earn tenure at the end of their fourth-year. In addition, tenured

teachers rated ineffective or partially effective for consecutive years may receive a charge of

inefficiency. However, districts retain some discretion, as they may offer a third opportunity

to teachers whose second rating was partially effective. After receiving a charge of ineffi-

ciency, the teacher’s tenure status is subject to an arbitration process of no more than 48

days. If the arbitrator rules in favor of the district, the teacher’s employment is terminated.

To calculate value-added, I use the NJDOE’s teacher-student linked administrative test

score data from 2012 to 2018. These math and English language arts (ELA) tests include

the New Jersey Assessment of Skills and Knowledge (NJASK) for Grades 3 to 8 from 2012

to 2014, the High School Proficiency Assessment (HSPA) for grades 11 to 12 from 2012 to

2014, and the Partnership for Assessment of Readiness for College and Careers (PARCC)

exam for grades 3 to 11 from 2015 to 2018.9 These data include student gender, race, Free or

Reduced-Price Lunch (FRPL) eligibility, English language learner (ELL) status, and special

education status. The dataset also contains teacher gender, race, and experience.10

I use all teachers to estimate the following model separately for math and ELA:11

Aijgst = αAit−1 + βXit + η1Cit + η2HSi ∗ Cit + λSit +Θjt + εijgst (1)

where Aijgst are the test scores of student i in teacher j’s grade g class in school s and year

t, which is standardized to have mean 0 and standard deviation 1 in each grade-year. I

control for the student’s previous year math and ELA test scores (Ait−1) because Walsh et

al. (2018) show using both previous test scores improves the precision of the value-added

estimates. I also include controls for student, classroom, and school characteristics. The

9 Appendix Section A.2 addresses concerns about the transition to the PARCC exam in 2015.
10 Table A2 provides summary statistics for students (first column) and teachers (second column). These

statistics match expectations given New Jersey’s demographic composition and national proficiency rates.
11 I use value-added because previous research has linked it to long-run student success (Chetty et al.,

2014). In addition, Walsh and Isenberg (2015) find mSGP methods may generate biased estimates of teacher
performance because they lack controls for student, classroom, and school characteristics. For example, they
depress the scores of teachers who instruct many English language learners. Also, the mSGP measures are
not available in the data.
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student variables (Xit) include gender, race, FRPL eligibility, ELL status, and special edu-

cation status. The classroom controls (Cit) are class size and aggregated student controls.

To separately identify classroom characteristics for elementary schools where many teachers

have one class and secondary schools where most teachers instruct multiple classes, I interact

these characteristics with an indicator for being in grade 7 or higher (HSi). School covariates

(Sit) include urbanicity
12, enrollment, racial composition, and percentage of FRPL eligible.13

Value-added is measured annually by Θjt fixed effects.14

To calculate career value-added, I use equation (1) but replace teacher-year fixed effects

(Θjt) with teacher fixed effects (Θj). I also include year fixed effects (γt) to account for shifts

in the distribution of value-added over time. Thus, I estimate the following model:

Aijgst = αAit−1 + βXit + η1Cit + η2HSi ∗ Cit + λSit +Θj + γt + εijgst. (2)

To avoid mechanical correlations, I estimate equation (2) by excluding any years that the

models use as predictors. For example, if the model predicts career value-added using annual

value-added in years 1, 2, and 3, then I only use data after year 3 to estimate equation (2).15

I limit the sample to teachers who have summative ratings and value-added estimates for

their first three years of experience.16 Using these restrictions, I focus the analysis on novice

12 I merge urbanicity data from the National Center for Education Statistics (2018) using the crosswalk
from the New Jersey Department of Education (2017).

13 The main results are robust to using school fixed effects rather than Sit to calculate value-added.
14 Test score floor and ceiling effects are unlikely to bias the estimates for tracked classes, as the scores

follow a normal distribution centered at the average score. Only 0.44% of tests receive the lowest score, while
0.94% of tests receive the highest score. Based on this information, I would be most concerned about the
slightly greater test truncation at the highest score. However, Resch and Isenberg (2018) found that ceiling
effects only shrink value-added toward the middle of the distribution rather than send average value-added to
the bottom of the distribution. Since my simulations only dismiss teachers at the bottom of the distribution,
ceiling effects would not punish those teaching higher-level content.

15 I also do not use Bayesian shrinkage estimators (Kane & Staiger, 2008) because they shrink annual
value-added toward career averages. This introduces a mechanical correlation between each value-added
estimate that would overstate the predictive power of the models.

16 While all teachers receive summative ratings, this restriction limits the sample to only math and ELA
teachers.
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teachers with multiple measures of performance.17

2.1 Value-Added and Summative Ratings Correlation

Before evaluating the predictive models, I estimate the correlation between value-added

and summative ratings among all teachers in Figure 1. As described in Jacob and Lefgren

(2008), I adjust for measurement error in the value-added estimates.18 Panel A shows the

correlation between math value-added and itself (solid black), ELA value-added (dashed

red), and ratings (dashed and dotted blue). The x-axis records time between observations,

so concurrent measures occur at x = 0, while measures separated by 5 years occur at x = 5.

Panels B and C are designed similarly for ELA value-added and summative ratings.

In Figure 1, the correlations are stronger within performance measures than across them

and weaken over time. In fact, the solid black and dashed red lines in Panels A and B show

that the correlation between math and ELA value-added ranges between 0.17 and 0.6. This

suggests math and ELA value-added capture similar components of teacher effectiveness.

Figure 1 also shows that contemporaneous value-added and summative ratings only have

correlation coefficients of about 0.14. Thus, ratings primarily capture elements of teacher

effectiveness that are not measured by value-added. It is important to consider both metrics

when making personnel decisions because improving teacher performance along one dimen-

sion does not necessarily increase performance along the other dimension.

Ideally, I would estimate the correlation between value-added estimates and the individual

summative rating components to demonstrate differences between the measures. However, I

lack the data to estimate these effects. I would not expect a high correlation between SGOs

and value-added because they rely on different types of tests written by different entities.

17 In Table A3, I record the number of teacher observations remaining after restricting the sample.
Limiting the sample to teachers with non-missing value-added in year 1 has the largest effect on sample size.
Ex-ante, it is critical to focus the analysis on year one teachers because early career returns to experience are
quite rapid and non-linear (Kraft & Papay, 2015; Wiswall, 2013; Hanushek & Rivkin, 2006). Nonetheless,
the results are similar when considering all teachers.

18 Specifically, this adjustment rescales the correlation coefficient by the standard deviation of the ob-
served value-added estimates divided by the standard deviation of the true value-added measure.

8



In addition, the state tests provide snapshots of performance on testing days, while the

SGOs include long-term assessments, such as written pieces with multiple opportunities for

revision. When considering the relationship between value-added and mSGPs, Guarino et

al. (2014) identified a correlation of 0.87, however, they found large differences in the tails

of the distributions. In fact, about 30 percent of bottom quartile mSGP teachers were not

bottom quartile value-added teachers. This difference is particularly relevant in this setting

where I consider policies to dismiss teachers at the bottom of the performance distribution.

3 Empirical Analysis

3.1 Policymaker’s Problem

Prior to proceeding with the analysis, I introduce the policymaker’s problem. The policy-

maker seeks to maximize teacher performance by selecting the highest quality teachers, as

measured by value-added and summative ratings. In this two-dimensional space, the rel-

ative importance of value-added and summative ratings is not well understood. Previous

research has linked value-added to long-run student success (Chetty et al., 2014), though

these tests fail to capture the development of non-cognitive skills that improve student out-

comes (Jackson, 2018). While summative ratings may capture these critical components of

student success, Kraft (2019) finds evidence that the classroom observation component of

summative ratings also poorly captures the development of non-cognitive skills. Nonetheless,

the education community often feels uncomfortable only relying on these test-based metrics

based on single-day snapshots (“Value-added measures in teacher evaluation”, 2019; “Taking

action on the promise of the Every Student Succeeds Act”, 2016), so they rely on summative

ratings as a more comprehensive measure of teacher performance. In fact, every state uses

observations to assess their teachers (Ross & Walsh, 2019). Since the trade-offs between

value-added and summative ratings are not well understood, I estimate optimal weights

on each performance measure to maximize measures of teacher quality across a range of
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utility functions. These utility functions allow the relative importance of value-added and

summative ratings to vary.

4 Using Additional Performance Measures: Value-Added

In this section, I use OLS to predict later career performance based on early career perfor-

mance. While more advanced machine learning techniques exist, I use OLS for greater policy

relevance and transparency. Districts could conduct the OLS regressions and provide teach-

ers with the weights (the coefficients from the regressions) used to generate the final score.19

This exercise evaluates whether schools can incorporate additional performance measures

(value-added) to better inform personnel decisions.20

To conduct the analysis, I split the sample into three parts. First, I use OLS on 40% of

the sample to impute missing data.21 Second, I estimate the prediction model with a distinct

40% of the sample. Third, I use the remaining 20% of the sample to test the performance

of the models. This holdout sample allows me to evaluate the efficacy of the models.

To impute subsequent summative ratings and value-added, I use previous summative

ratings and value-added.22 This imputation is critical because I evaluate the model by com-

paring the subsequent performance of teachers retained under the current system to that of

teachers retained using the predictive models. Since I do not observe the performance of

teachers who leave the profession, I encounter a one-sided problem for teachers who were

dismissed and left the profession under the current system but would be retained using

19 In Section 4.1, I find that machine learning techniques generate similar results.
20 District leaders may have additional information about teachers that are unavailable in the adminis-

trative data. However, summative ratings should incorporate this information, as they are comprehensive
measures of teacher performance. For example, these rubrics include scores for professionalism that cap-
ture daily interactions between teachers and administrators. Administrators must carefully document these
interactions in the summative ratings, as these ratings are subject to review in dismissal hearings. In ad-
dition, Section A.3 suggests that characteristics that are unobservable in the data but observable to school
administrators do not bias predicted performance.

21 I impute subsequent summative ratings using previous summative ratings and the average of non-
missing value-added. Similarly, I impute subsequent math (ELA) value-added using previous math (ELA)
value-added and summative ratings. I assume dismissed teachers would continue to teach the same subject
in the future when imputing value-added.

22 I do not use demographics, so I avoid introducing gender and racial biases into the imputation.
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other prediction models.23 To address this concern, I must impute the subsequent perfor-

mance of teachers who left the profession. Districts retain some discretion when dismissing

low-performing teachers, so, in Appendix Section A.3, I compare districts with higher dis-

missal rates conditional on summative ratings to districts with lower dismissal rates. If

high-dismissal districts select on unobserved characteristics, imputations relying on these

teachers would overpredict performance in low-dismissal districts. However, this test shows

no evidence of prediction bias.

Next, I estimate several prediction models using both value-added and ratings. First, I

calculate mean summative ratings in the first three years, which closely reflects the current

system in New Jersey. As discussed in Section 2, performance-based personnel decisions

solely rely on ratings.24 In fact, Figure 2 shows mean pretenure ratings in the holdout

sample are positively correlated with retention rates. Next, I use previous performance to

predict subsequent performance along the same metric. For example, I use previous math

value-added to predict subsequent math value-added. I then repeat the process using ELA

value-added and summative ratings. However, these prediction models are limited by a

multidimensionality problem to identify the optimal combination of value-added and ratings

that maximizes the state’s utility function. Practically, since regressions only permit one

outcome variable and value-added is weakly correlated with summative ratings, the models

will struggle to generate improvements along all dimensions of performance simultaneously.

Instead, the models will maximize the outcome variable and have little effect on the other

dimensions. I can reduce this multidimensional problem into a single dimension by using

a composite measure that is a weighted average of value-added and summative ratings.

Specifically, I standardize each performance measure to mean 0 and standard deviation 1

within a given experience year. I generate a single value-added measure by averaging non-

23 I do not encounter this problem for teachers who were dismissed and switched districts.
24 In New Jersey, highly-rated pretenure teachers may still be dismissed without cause. However, I focus

my analysis on simulated performance-related dismissals by imputing performance for all teachers and only
removing those with the lowest average pretenure summative ratings. If I used observed turnover instead of
this performance-based metric, the baseline estimate would include both performance- and non-performance-
related turnover.
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missing standardized math and ELA value-added. I then construct a weighted average of the

combined value-added measure and standardized summative rating. The weights depend on

the relative importance of value-added and ratings in the state’s utility function. Using OLS

regressions, I predict subsequent composite values using previous composite measures. Each

of these models relies on three years of pretenure data to predict subsequent performance.25

Next, I compare the predicted performance from the model to the actual performance in

the holdout sample. Panels A, C, and E of Figure 3 plot actual performance against predicted

performance. The models accurately predict performance with mean squared errors of less

than 0.028 student test score standard deviations or summative rating points.

In addition, I compare retention rates to predicted performance in the holdout sample.

Panels B, D, and F of Figure 3 plot retention rates by predicted performance. In Panel

F, districts effectively remove teachers predicted to earn low summative ratings. However,

Panels B and D show districts fail to remove teachers predicted to generate low value-added.

These findings suggest revised rankings are more likely to improve value-added than ratings.

I then evaluate the prediction models by simulating personnel decisions. Specifically, I

rank teachers based on their predicted performance generated from each model. I simulate

personnel decisions by removing the bottom p ∈ {1, 2, . . . , 70} percentile of teachers using

each ranking system.26 My main specification dismisses 10% of teachers because annual

turnover rates for New Jersey teachers in their first three years of teaching are about 13%. I

cannot distinguish between voluntary and involuntary turnover in the data, so I assume 10%

is a reasonable dismissal rate.27 As a comparison model, I rank teachers based on their mean

pretenure summative ratings. Since I cannot distinguish between voluntary and involuntary

turnover, simulating dismissals based on mean pretenure ratings focuses the analysis on

involuntary turnover of low-performing teachers. Specifically, I generate the control group

25 I use a three-year pretenure period because 32 states use this length (Thomsen, 2020).
26 I stop at the 70th percentile because the samples become small.
27 In fact, it is very difficult to identify voluntary and involuntary turnover in any dataset. For example,

some low-performing teachers may appear to voluntarily leave the district if they knew that they would be
dismissed shortly afterwards.
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where I remove the lowest ranked teachers based on mean pretenure ratings (rather than

using the actual observed turnover) and the treated group where I remove the lowest ranked

teachers based on a given model. Since I limit turnover in both control and treated groups

to involuntary dismissals, voluntary turnover will not bias my results.

Panel A of Figure 4 simulates average performance when using mean summative ratings

to rank the teachers. The y-axis records the average performance of retained teachers,

while the x-axis defines the percentile of teachers dismissed. For example, when x = 10, I

dismiss the bottom 10% of teachers based on mean pretenure ratings. While this method

accurately ranks teachers by subsequent summative ratings (dashed and dotted blue), it

makes few value-added gains (solid black and dashed red). The first row of Table 1 shows

summative ratings rise by 0.0343 points when dismissing the bottom 10% of teachers28

based on pretenure ratings relative to dismissing no teachers.29 However, ELA value-added

only increases by 0.0116 student test score standard deviations, while math value-added is

unchanged. Ideally, schools would continue to generate these summative rating gains, while

further improving subsequent value-added. Thus, I turn to OLS predictions.

First, I estimate OLS models using only one measure of performance. I use previous

math value-added to predict subsequent math value-added and repeat the process for ELA

value-added and summative ratings. Panels B–D of Figure 4 show the results.30 I demon-

strate improvements along the outcome measure but rarely increase value-added and ratings

simultaneously. For example, Panel B relying on math value-added as the outcome generates

strong gains in math value-added as dismissal rates increase with little change in ratings.

Similarly, Panel D shows ratings rise as dismissal rates increase when using a prediction

28 I dismiss the lowest ranked teachers to approximately match statewide turnover rates and simplify the
analysis. In practice, districts could adjust their own thresholds based on their teachers’ performance.

29 In all tables relying on performance as the dependent variable, the main effects are measured in student
test score standard deviations. This can be interpreted as changes in student performance relative to the
test. I also include a teacher-level standardized estimate of the effects in brackets by dividing the coefficient
by the standard deviation of teacher performance in the sample. This measures value-added relative to all
other teachers and allows me to estimate present value gains based on Chetty et al. (2014).

30 The graphs that rely on math (ELA) value-added as predictors or outcomes generate noisy estimates
for ELA (math) value-added due to limited samples of elementary school teachers who teach both subjects.
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model relying on ratings. However, value-added remains unchanged. I only generate mild

rating gains in Panel C along with the increase in value-added when using a prediction model

relying on ELA value-added.

Table 1 quantifies these changes using a 10% dismissal rate. The first row records the

difference between no dismissals and 10% dismissal rates, while the remaining rows compare

average retained teacher performance using the OLS models relative to the current mean

summative rating dismissal policy. For example, dismissing the bottom 10% of teachers using

models relying on value-added increases subsequent value-added by 0.0137–0.0265 student

test score standard deviations, as seen in the second and third rows of Table 1. However,

this policy causes summative ratings to decline by up to 0.0363 points relative to the current

system. Similarly, the third row using ratings generates nearly no gains along any dimension

relative to the current system.

Similar to Mihaly et al. (2013), I find that the models effectively predict the outcome

variable but poorly predict the other measures. As discussed earlier, I encounter a multidi-

mensionality problem that requires me to identify the optimal combination of value-added

and ratings to maximize the state’s utility function. Using a composite measure that is a

weighted average of value-added and ratings, I reduce this multidimensional problem into a

single dimension.

In the final five entries of Table 1, I use the composite measure and find that placing

more weight on summative ratings (moving down the table) increases subsequent ratings

but decreases subsequent value-added. Yet, these models can simultaneously increase value-

added and ratings in Figure 5. The third to last row of Table 1 using a composite measure

with 50% weight on ratings increases subsequent value-added by 0.0129–0.0140 student test

score standard deviations without resulting in a statistically significant decline in subsequent
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ratings.31 These improvements are all statistically significant at the 5% level.32

These results show districts can generate improvements in average teaching performance

by using a weighted average of value-added and summative ratings.33 These gains are feasible

because the current system fails to perfectly sort teachers by subsequent ratings and ignores

value-added. As a result, OLS models can generate improvements by more effectively ranking

similarly rated teachers by subsequent value-added.

As seen in brackets, the average value-added gains are 0.045 teacher-level standard de-

viations of math and ELA value-added. Using partial equilibrium estimates from Chetty

et al. (2014), this equates to a present value gain of $2,520 per student.34 This value is

nearly 12 times larger than the productivity effects of tenure (Ng, 2022). In addition, this

method is quite inexpensive to implement because all these data are already available to the

school districts. Compared to previous research, these estimated gains lie in the upper tail

of the confidence interval from Chalfin et al. (2016). I further contribute to the literature

by demonstrating that other dimensions of performance need not significantly decline to

generate these gains.

However, there is inherently a tradeoff between value-added and summative ratings. To

depict this relationship, I estimated a series of composite models placing different weights on

31 The results are not sensitive to sample variations across different specifications. Table A4 replicates
Table 1 but only uses the 69 teachers in the holdout sample with math value-added, ELA value-added, and
summative ratings. While the estimates are noisier and no longer statistically significant due to the smaller
samples, the results remain similar in magnitude.

32 The point estimates are similar when using all teachers rather than just novices in Table A5. To
maintain policy relevance, I continue to restrict the sample to novices because dismissing pretenured teachers
is much more feasible than dismissing tenured teachers. Performance-related dismissal rates are about 19
times higher for non-tenured teachers than tenured teachers (National Center for Education Statistics, 2012).

33 The composite models relied on fixed weights in the inputs and outputs. For example, the 30% ratings
model used the 30% weight on both inputs and outputs. However, the results are similar when allowing the
OLS model to flexibly assign weights to value-added and summative ratings. In fact, Table A6 estimates
the change in performance using a flexible model where I regress each composite measure on three years
of value-added and summative ratings. These results are quite similar to those found in Table 1. Since
allowing the model to flexibly estimate the weights generates similar results and fixed weights are likely
more palatable and easily explained to stakeholders, my main specification continues to use fixed weights.

34 Chetty et al. (2014) estimates a 1 teacher-level standard deviation increase in value-added for 1 grade
generates a present value gain of $7,000 per student. I scale this estimate by the 0.045 teacher-level standard
deviation gain and the 8 grades for which I can calculate value-added.
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value-added and summative ratings.35 I then rely on the the following Cobb-Douglas utility

function to identify optimal points:

Utility = MathV A
1−x
2 ∗ ELAV A

1−x
2 ∗Ratingsx (3)

In equation (3), utility is a function of subsequent math value-added, ELA value-added,

and summative ratings. X ∈ (0%, 1%, 2%, ..., 100%) records the relative weight on ratings.

Figure 6 plots the optimal composite rating weight (y-axis) given the relative importance

of ratings in the utility function. As expected, optimal composite measures place more

weight on value-added when the utility function emphasizes value-added. Small sample sizes

limit the variation in optimal points across adjacent weights resulting in many plateaus in

the graph. For instance, the composite measure with 73% weight on ratings produces the

greatest utility if there is at least 75% weight on ratings in the utility function. Figure 6

also shows that optimal points always rely on both ratings and value-added rather than just

one or the other. For example, even if there is no utility weight on summative ratings, the

optimal composite measure still puts 17% weight on summative ratings.

4.1 Information or Advanced Techniques?

In this section, I evaluate whether the improvements in subsequent teacher performance can

be attributed to using additional performance measures (value-added) or more complicated

algorithms. In Table 1, the linear regression using only ratings produces nearly identical re-

sults to the model using mean pretenure ratings. This suggests the gains may be a product of

using more data rather than advanced techniques. To evaluate this hypothesis, I compare the

OLS results to an analysis relying on machine learning algorithms. If techniques contribute

to the gains, I expect the more advanced machine learning algorithms to outperform OLS.

As described in Appendix Section A.4, I impute and train the data using random forests.

35 I created 101 composite measure models ranging from 0% to 100% weight on summative ratings in
increments of 1%.

16



Using random forests, Table 2 shows the baseline results comparing no dismissals to

10% dismissals using mean summative ratings (top row) and changes relative to the current

system (remaining rows). The random forest estimates are very similar to, if not slightly

worse than, the OLS results in Table 1. Thus, the gains are attributable to using more data.

In fact, the estimates remain similar because the relationship between predictors and

outcomes is linear. Figure A1 plots this linear relationship between year 3 and subsequent

performance.36 Both random forests and OLS account for linear relationships between pre-

dictors and outcomes, so they both perform equally well in this context. Random forests are

more useful when incorporating additional data. For example, individual rating components

capturing specific domains, such as classroom management or lesson planning, may have

non-linear relationships. In this case, flexible machine learning algorithms could produce

sizable gains. For policy relevance, I continue to use OLS for the remainder of the paper.

4.2 Changing Demographics in Response to Reformed Models

While I find that revised ranking systems can improve value-added without causing a statis-

tically significant decline in summative ratings, it is also critical to consider the impacts of

these revised decisions on diversity. In New Jersey, male and non-white (Black or Hispanic)

teachers are underrepresented in the profession relative to their corresponding student de-

mographics. Table A2 shows that only 18.2% of teachers are male, while 51.6% of students

are male. Similarly, non-white teachers comprise only 13.5% of the teacher labor force, while

40.2% of students are non-white.37

This underrepresentation may have negative impacts on in-group students. In fact,

Gershenson et al. (2018) find Black students’ graduation and college enrollment rates in-

creased when paired with Black teachers. Other papers show test score improvements when

male and Black students were assigned to teachers of their own gender (Dee, 2007) and race

36 The relationship is also linear when comparing performance in other years.
37 These gender and racial disparities are prevalent throughout the United States (“Characteristics of

Public School Teachers”, 2020; “Racial/Ethnic Enrollment in Public Schools”, 2020).
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(Dee, 2004; Egalite et al., 2015). Similarly, Dee (2005, 2007), Ehrenberg et al. (1995), and

Gershenson et al. (2016) find teachers had worse perceptions of out-of-group students. With

already limited access to in-group educators, male and non-white students may benefit from

revised personnel decisions that reduce turnover among these teachers.

To evaluate impacts on diversity, Figure 7 plots changes in demographics associated with

each prediction model. In Panel A using the current ranking system, the fraction of male

(dashed and dotted blue) and non-white (solid black) teachers steadily declines as dismissal

rates increase.38 This occurs because male and non-white teachers earn lower summative

ratings. Figure 8 shows the cumulative distribution functions of the performance measures

by teacher gender and race. In Panels E and F, the distribution of summative ratings for

female (dashed red) and white (dashed red) teachers almost universally exceeds the distri-

bution for male (dashed and dotted blue) and non-white (solid black) teachers, respectively.

Similarly, Table 3 shows summary statistics of teacher performance by gender and race. In

the final column, I find mean summative ratings are 0.111 and 0.126 points higher for fe-

male and white teachers, respectively. Since male and non-white teachers consistently earn

lower ratings, prediction models estimated to maximize ratings simultaneously reduce these

teachers’ representation in the profession.39

Despite earning lower ratings, male and non-white teachers do not generate less value-

added than their counterparts in Panels A–D of Figure 8. In fact, Panel B of Table 3 shows

that non-white teachers’ average value-added is 0.082–0.123 student test score standard

deviations higher. Thus, the fraction of male teachers stays constant and the fraction of

non-white teachers rises as dismissal rates increase for value-added models in Panels B and

C of Figure 7. Table 4 uses 10% dismissal rates to show baseline demographics comparing no

38 I find similar results using the model estimated using summative ratings. In Panel D, the fraction of
male teachers also declines, though the fraction of non-white teachers remains steady.

39 When conducting an analysis similar to Table 4 in Sartain and Steinberg (2020), I find that 23% of
the racial gap and 81% of the gender gap in ratings persist when controlling for past performance, classroom
characteristics, grade, and school (not shown). In addition, using the same dataset, Ng (2022) finds these
rating disparities are larger when black and male teachers are evaluated by white and female principals,
respectively. The persistent racial and gender gap along with increased out-of-group rating disparities suggest
evaluation biases contribute to the lower ratings for male and Black teachers.
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dismissals to 10% dismissals using mean summative ratings (top row) and changes relative

to the current system (remaining rows). In the top row, the current system reduces the

male teacher composition by 3.56 percentage points relative to no dismissals. This difference

is statistically significant at the 1% level. I find a negative point estimate for non-white

teachers but it is not statistically distinguishable from 0. The second and third rows of

Table 4 show the models that incorporate value-added generate statistically significant 0.49

to 3.4 percentage point increases in the fraction of male and non-white teachers relative to

the current system.

Focusing on the composite measures, models that place less weight on summative ratings

increase male and non-white teacher composition. As a result, placing at least 50% weight

on value-added generates statistically significant increases in male and non-white teacher

composition ranging from 0.88 to 3.3 percentage points. All of these estimates are statistically

significant at the 5% or 1% level. Panel E of Figure 7 using the composite measure with

50% weight on ratings corroborates this finding, as male teacher composition declines more

slowly than in Panel A, while non-white teacher composition increases. While male and

non-white teachers earn lower ratings, their similar or higher value-added stabilizes diversity

in the composite models. Thus, the revised models improve diversity relative to the current

system.40

5 Pretenure Period Length

In this section, I quantify the returns to longer pretenure periods by reestimating each model

described in Section 4 using 1, 2, or 3 years of pretenure data.41 While longer pretenure peri-

ods will improve the precision of estimated performance and almost always increase average

retained teacher quality, I also must consider the corresponding reduced compensating differ-

entials associated with weakened job security. In fact, Johnston (2018) finds teachers equate

40Although male and non-white teachers earn lower summative ratings, Appendix Section A.5 finds no
evidence that discrimination is biasing the OLS models.

41 I do not include estimates using 4 or 5 pretenure years because I have too few observations.
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each additional pretenure year to a $415 reduction in salary. To overcome these costs, any

improvement must be relatively large in magnitude and statistically significant.

Table 5 estimates the improvement in average teacher quality generated by extending

the pretenure period from 1 to 3 years with a 10% dismissal rate. Using the additional

data produces positive point estimates, which is consistent with arguments to use multiple

years of data when making decisions based on value-added estimates (Harris & Sass, 2014;

Staiger & Rockoff, 2010; Rothstein, 2015). However, the gains are inconsistent with only a

few statistically significant values.42 When using summative ratings in the first and fourth

entries, value-added remains unchanged, while summative ratings increase by 0.0168–0.0196

points. I find analogous results for value-added and the composite measures but the value-

added gains are never statistically significant. While the estimates in Table 5 are similar in

magnitude to those from using additional information in Table 1, the value-added gains are

inconsistent when extending the pretenure period resulting in the lack of statistical signifi-

cance. Also, unlike the extended pretenure period estimates, the revised prediction models

from Section 4 do not reduce compensating differential through weakened job security.43

Extending the pretenure period provides little additional information at low dismissal

rates because principals can accurately identify low-performing teachers with limited data

(Harris & Sass, 2014). In fact, extended pretenure periods only produce strong, statistically

significant effects when dismissal rates are higher. Figure 9 shows the improvements in aver-

age teacher performance generated when extending the pretenure period from 1 to 3 years.

As dismissal rates rise for the composite measure in Panel E, the performance gains also

increase for all three metrics.44 Using a 50% dismissal rate, Table 6 shows large, statistically

significant gains to extended pretenure periods. For example, the model using a composite

measure with 50% weight on ratings increases average retained teacher math value-added,

42 The gains are even weaker when extending the pretenure period from 1 to 2 years (Table A7) or from
2 to 3 years (Table A8).

43The revised models are not completely costless, as some teachers have left the teaching profession in
response to an increased reliance on quantitative measures of performance (Perryman & Calvert, 2020).
However, both extended pretenure periods and revised models rely on quantitative measures.

44 Panels A–D of Figure 9 produce a similar pattern of results using the other models.
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ELA value-added, and ratings by 0.0715 student test score standard deviations, 0.0403 stu-

dent test score standard deviations, and 0.0666 points, respectively. These estimates are

all statistically significant at the 5% or 1% levels. These gains are up to 0.06 student test

score standard deviations or points larger than the analogous point estimates from a 10%

dismissal rate in Table 5.

To depict a potential mechanism, I plot the kernel density of teacher performance in

Figure 10. In Panels A and B, I graph the distribution of career math value-added as a

proxy for true ability. The vertical line in Panel A shows the 10th percentile, which illustrates

a 10% dismissal rate. The red distributions represent noisy annual performance measures

of a teacher whose true ability is 0.2 student test score standard deviations below the 10th

percentile. This teacher should be dismissed but may be misclassified out of the bottom

decile and retained due to this noise.45 Using three years of data reduces the noise of the

estimates and tightens the distribution. As a result, I shade the difference between the

dashed and dotted lines, which represents the number of bottom decile teachers misclassified

using one year of data who would be correctly classified using three years of data. The size

of the distribution is scaled to the density of teachers at that point in the overall distribution

of teacher quality. Since there are few teachers in this portion of the distribution, the gains

from extending the pretenure period are very small. In comparison, Panel B conducts a

similar analysis using 50% dismissal rates and generates much larger gains (shown in blue).

The results are similar for ELA value-added and summative ratings.

In other words, more teachers are clustered near the middle of the distribution than in the

tails. The bottom decile of teachers has math value-added that spans about 1 student test

score standard deviation,46 while the 40th–50th percentiles span only 0.04 student test score

standard deviation. With similar annual performance noise throughout the distribution, it

is much harder to classify teachers near the 50th percentile than near the 10th percentile.

45 To proxy for the variance of the distribution using 1 year of data (dashed lines) or 3 years of data
(dotted lines), I calculate the mean squared errors relative to the career performance of teachers within 0.1
student test score standard deviations of the mean.

46 I truncated the tails of the graph to enlarge the image.
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Thus, extended pretenure periods only produce meaningful gains when dismissal rates are

closer to 50%.47

These results align with several papers using structural models of teacher contracts

(Rothstein, 2015; Staiger & Rockoff, 2010). In Rothstein (2015), his graphs show that

extending the pretenure period has little effect when dismissal rates are low. The gains

accumulate and are largest when dismissal rates approach 40%.48

From a policy perspective, these results would recommend shortening the pretenure pe-

riod to only one year or increasing dismissal rates. The current three- to four-year pretenure

period reduces compensating differentials relative to shorter pretenure periods without offer-

ing much additional useful information. However, I refrain from making a definitive policy

prescription because administrators may use first-year performance results for professional

development opportunities that may dramatically improve performance for some teachers.

In addition, my simulation does not account for disruptions to the teaching staff, such as lost

teaching experience, due to increased turnover (Ronfeldt et al., 2013; Hanushek et al., 2016;

Sorensen & Ladd, 2020), as well as changes in selection into teaching. Rothstein (2015) mod-

els selection into teaching and finds optimal dismissal rates vary between 10% and 71% based

on the model’s parameterization. Although I am unable to identify optimal dismissal rates,

I account for selection by holding dismissal rates fixed when estimating improvements from

extended pretenure periods. Consequently, this analysis informs optimal pretenure length

conditional on dismissal rates. Specifically, a long pretenure period with low dismissal rates

is a suboptimal combination of policies.49

47 While it is easy to identify low-performing teachers, the improvements across all measures of perfor-
mance are much more consistent when using the composite measure. Therefore, it is still difficult to improve
summative ratings or value-added without incorporating the other in the prediction model.

48 In addition, Staiger and Rockoff (2010) find these improvements are limited if principals must retain
low-performing teachers until the tenure receipt decision. In practice, teachers can be dismissed throughout
the pretenure period. My analysis focuses on comparing the performance of retained teachers following tenure
receipt, which avoids this comparison. However, policies that retained relatively low-performing teachers on
the margin of tenure receipt would only increase the costs of extended pretenure periods.

49 There also are practical limitations to a one-year pretenure period because teachers receive summative
ratings at the end of the year and districts may wish to use these ratings as opportunities for growth.
However, a two-year pretenure period remains feasible.
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6 Conclusion

Schools can simultaneously incorporate value-added and summative ratings to better inform

personnel decisions. Utilizing predictive models, districts can increase subsequent average

value-added by 0.01 student test score standard deviations, as well as the diversity of the

teacher labor force without causing a statistically significant decline in ratings. The gains are

a product of using additional information (value-added) rather than sophisticated methods,

as the estimates are similar when using simple OLS or advanced machine learning techniques.

These improvements are virtually costless to implement, as all the data are readily available.

I also find that longer pretenure periods do not improve average teacher quality un-

less accompanied by higher dismissal rates. Schools can accurately classify bottom decile

teachers after only one year of teaching. Thus, extra years of data provide little additional

information, while also reducing compensating differentials.50 This finding suggests a more

efficient policy would have either low dismissal rates with a short pretenure period or high

dismissal rates with a longer pretenure period. Future research that estimates selection ef-

fects associated with longer pretenure periods and higher dismissal rates could supplement

this analysis.

Based on these results, schools should flexibly incorporate value-added and summative

ratings to inform personnel decisions. The models placing additional weight on value-added

generate meaningful, statistically significant increases in subsequent value-added. Although

this often simultaneously reduces subsequent ratings, several cases result in, at most, trivial

declines. Similarly, the value-added returns to extending the pretenure period are smaller

when using models that only rely on ratings. As discussed earlier, value-added has been

linked to long-run student success (Chetty et al., 2014), whereas the returns to summative

ratings remain unclear. While the tradeoffs between value-added and summative ratings

are not known, these reforms would only worsen long-run student outcomes if, compared to

50 However, longer pre-tenure periods allow districts to use early performance data to inform professional
development. This may dramatically improve performance for some teachers.
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value-added, summative ratings had a much greater positive impact on student outcomes.

Future research could supplement this paper by estimating the precise impact of summative

ratings on long-run student outcomes, similar to Chetty et al. (2014) for value-added.

At the same time, the current system relying solely on ratings reduces diversity due to

increased male and non-white teacher dismissal rates. The reduced gender and racial repre-

sentation may worsen male and non-white student outcomes. Adding value-added to these

models reduces these disparities. Thus, flexibly incorporating value-added and summative

ratings to inform personnel decisions would improve measures of teacher quality and teacher

diversity.

This proposed reform is also practical to implement. Since OLS and machine learning

generate similar gains, policymakers could just implement simple regressions to predict future

performance based on past performance.51 Machine learning techniques may prove useful if

individual components of the summative ratings become available. The flexibility of machine

learning techniques to account for non-linear relationships could yield even greater gains.

This study’s findings maintain external validity because the Teacher Practice component

of New Jersey’s summative ratings rely on the same evaluation instruments as other states.

For example, one of the approved rubrics, the Danielson Framework, has been used in 31

states (“Our Story”, 2022).

Despite its external validity, there are four major limitations of this research. First,

it only focuses on math and ELA teachers in grades with standardized tests. However,

other subject-grades could increase the weight on alternative local test-based metrics of

performances, such as SGOs. As discussed in Section 2, SGOs are designed by administrators

and teachers to measure student growth and rely on the same standards as the state tests.

If future research can show SGOs are informative, they may serve as an alternative option

in a similar analysis for subject-grades without standardized tests. In this case, districts

51 Individual districts may lack the expertise to calculate value-added and the predictive models but each
state’s Department of Education already has personnel that calculate mSGPs. These individuals would be
familiar with value-added and OLS, so these calculations may be conducted at the state-level before being
disseminated to individual districts.
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could increase the weight on SGOs for grades without standardized tests to better identify

high-quality teachers in these subjects. Otherwise, these policies would only be relevant for

math and ELA teachers in tested grades.

Second, this research only has limited measures of non-cognitive skill development, which

are critical to student outcomes (Jackson, 2018). Districts may measure non-cognitive

skills using absences, suspensions, and grade repetition, as well as individual components

of Teacher Practice, such as the classroom management category. These measures may be

incorporated as both inputs and outputs, though further research would need to confirm the

validity of these particular performance metrics. Future research incorporating additional

measures of non-cognitive skills could further supplement this analysis.

Third, revised evaluation policies may generate distortions in performance and selection.

Following a multitask principal-agent model (Holmstrom & Milgrom, 1991; Baker, 2002),

teacher performance may be sensitive to the metrics used to evaluate the employee. Due to

limited sample sizes, my analysis relies on some test scores that do not impact the mSGP

component of the summative rating. In fact, 23% of the sample does not teach in subject-

grades that produce mSGPs. Prior work has found that revised personnel decisions generate

a behavioral response in performance (Dinerstein & Opper, 2022) and distortions in hiring

practices (Ng, 2022). This analysis cannot plausibly estimate the impacts of revised evalua-

tion policies on the reallocation of teacher effort across multiple dimensions of performance.

However, policymakers could implement this policy and fine-tune the weights in response to

observed distortions in behavior.

Fourth, I do not have disaggregated individual components of summative ratings. Since

summative ratings include mSGPs and each state places different weights on test scores

and evaluations, the precise recommended weights will vary across states. For instance, if

another state’s composite did not consider any test scores, the model for that state would

likely find an optimal weight that places greater emphasis value-added compared to New

Jersey’s. In this case, the increased weight on value-added may be less appealing to state
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leaders, especially since they had previously placed little weight on test scores. Nonetheless,

the methodology from this paper could be easily applied to other states to identify unique

optimal weights and provide a menu of improved performance-related dismissal policies.

Overall, I find that incorporating additional measures of teacher performance (value-

added) is a more effective technique to select high-quality teachers than extending the pre-

tenure period given current dismissal rates. Unlike extending the pretenure period with a

10% dismissal rate, using additional performance measures generates consistent improve-

ments in average retained teacher performance.
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Tables

Table 1: Difference in Performance using OLS

Math VA N ELA VA N Ratings N
Mean Ratings (Baseline) 0.0031 206 0.0116∗∗ 229 0.0343∗∗∗ 375

(0.0065) (0.0052) (0.0052)
[0.0101] [0.0404] [0.1066]

Math using Math 0.0265∗∗∗ 206 -0.0015 69 -0.0098 206
(0.0064) (0.0119) (0.0073)
[0.0858] [-0.0051] [-0.0305]

ELA using ELA -0.0097 69 0.0137∗∗ 229 -0.0363∗∗∗ 229
(0.0230) (0.0064) (0.0101)
[-0.0316] [0.0477] [-0.1128]

Ratings using Ratings -0.0074 206 -0.0048 229 0.0027 375
(0.0058) (0.0042) (0.0035)
[-0.0241] [-0.0168] [0.0085]

Composite using
10% Ratings 0.0246∗∗∗ 206 0.0120∗∗ 229 -0.0165∗∗∗ 366

(0.0071) (0.0059) (0.0061)
[0.0797] [0.0420] [-0.0513]

30% Ratings 0.0200∗∗∗ 206 0.0140∗∗ 229 -0.0087∗ 366
(0.0069) (0.0057) (0.0052)
[0.0647] [0.0488] [-0.0270]

50% Ratings 0.0129∗∗ 206 0.0140∗∗∗ 229 -0.0017 366
(0.0060) (0.0053) (0.0050)
[0.0420] [0.0488] [-0.0054]

70% Ratings 0.0085∗ 206 0.0039 229 0.0068∗∗ 366
(0.0046) (0.0042) (0.0033)
[0.0274] [0.0137] [0.0211]

90% Ratings 0.0010 206 0.0022 229 0.0068∗∗ 366
(0.0048) (0.0039) (0.0034)
[0.0031] [0.0078] [0.0210]

Notes: This table estimates the change in performance generated when dismissing the bot-
tom 10% of teachers using three years of data measured in student test score standard
deviations or summative rating points. These models use OLS regressions defined in Section
4. The row headers define the model’s outcome and predictors. The first row shows the
change in performance generated when dismissing the bottom 10% of teachers using mean
summative ratings relative to no dismissals. The comparison group changes in the remain-
ing rows. These rows record changes relative to the first row using the models defined in
the row header. The first two columns show the change in math value-added and number
of holdout observations. The remaining columns are defined similarly for ELA value-added
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and summative ratings.
Standard errors generated using 1,000 bootstrapped samples in parentheses. Performance

units rescaled to standard deviation 1 (teacher-level standard deviations) in the dataset are
included in brackets.

* p<0.10, ** p<0.05, *** p<0.01
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Table 2: Difference in Performance when Dismissing 10% of Teachers

Math VA N ELA VA N Ratings N
Mean Ratings (Baseline) 0.0047 206 0.0102∗∗ 229 0.0307∗∗∗ 375

(0.0064) (0.0051) (0.0051)
[0.0151] [0.0357] [0.0955]

Math using Math 0.0220∗∗∗ 206 0.0037 69 -0.0132 206
(0.0082) (0.0153) (0.0096)
[0.0712] [0.0129] [-0.0409]

ELA using ELA -0.0160 69 0.0081 229 -0.0287∗∗∗ 229
(0.0195) (0.0064) (0.0097)
[-0.0518] [0.0284] [-0.0893]

Ratings using Ratings -0.0051 206 -0.0050 229 -0.0028 375
(0.0056) (0.0048) (0.0050)
[-0.0165] [-0.0176] [-0.0086]

Composite using
10% Ratings 0.0144∗ 206 0.0127∗ 229 -0.0178∗∗ 366

(0.0086) (0.0066) (0.0073)
[0.0467] [0.0444] [-0.0554]

30% Ratings 0.0165∗∗ 206 0.0093∗ 229 -0.0088 366
(0.0065) (0.0055) (0.0060)
[0.0536] [0.0326] [-0.0273]

50% Ratings 0.0039 206 0.0061 229 -0.0084 366
(0.0069) (0.0058) (0.0058)
[0.0125] [0.0213] [-0.0259]

70% Ratings 0.0059 206 0.0013 229 0.0031 366
(0.0052) (0.0047) (0.0047)
[0.0193] [0.0045] [0.0096]

90% Ratings 0.0020 206 -0.0025 229 -0.0029 366
(0.0054) (0.0049) (0.0052)
[0.0064] [-0.0086] [-0.0091]

Notes: This table estimates the change in performance generated when dismissing the bottom
10% of teachers using three years of data measured in student test score standard deviations
or summative rating points. These models use random forest algorithms defined in Section
A.4. The row headers define the model’s outcome and predictors. The first row shows the
change in performance generated when dismissing the bottom 10% of teachers using mean
summative ratings relative to no dismissals. The comparison group changes in the remaining
rows. These rows record changes relative to the first row using the models defined in the
row header. The first two columns show the change in math value-added and number of
holdout observations. The remaining columns are defined similarly for ELA value-added
and summative ratings.

Standard errors generated using 1,000 bootstrapped samples in parentheses. Performance
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units rescaled to standard deviation 1 (teacher-level standard deviations) in the dataset are
included in brackets.

* p<0.10, ** p<0.05, *** p<0.01
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Table 3: Summary Statistics by Gender and Race

Panel A: Gender

Male Female Difference
Math VA -0.009 -0.017 0.008

(0.295) (0.273) (0.010)
ELA VA -0.017 -0.016 -0.001

(0.253) (0.267) (0.009)
Ratings 3.128 3.239 -0.111∗∗∗

(0.358) (0.304) (0.009)
Observations 1,747 7,856

Panel B: Race

Non-white White Difference
Math VA 0.091 -0.031 0.123∗∗∗

(0.276) (0.275) (0.011)
ELA VA 0.054 -0.028 0.082∗∗∗

(0.285) (0.259) (0.010)
Ratings 3.110 3.236 -0.126∗∗∗

(0.401) (0.298) (0.012)
Observations 1,312 8,291

Notes: This table records mean performance by gender (Panel A) and race (Panel B) mea-
sured in student test score standard deviations or summative rating points. The row headers
define the performance variable. The first column provides statistics for male and non-white
teachers, while the second column provides statistics for female and white teachers. The
standard deviations of each value are listed in parentheses below the means. The final col-
umn calculates the difference in means and provides the significance level from a T-test of
equality for the coefficients.

* p<0.10, ** p<0.05, *** p<0.01
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Table 4: Difference in Demographics when Dismissing 10% of Teachers

Male N Non-white N
Mean Ratings (Baseline) -0.0356∗∗∗ 375 -0.0019 375

(0.0092) (0.0060)
Math using Math 0.0206∗ 206 0.0049∗∗ 206

(0.0117) (0.0023)
ELA using ELA 0.0340∗∗∗ 229 0.0194∗∗∗ 229

(0.0103) (0.0050)
Ratings using Ratings 0.0148∗ 375 0.0000 375

(0.0086) (0.0061)
Composite using
10% Ratings 0.0330∗∗∗ 366 0.0148∗∗∗ 366

(0.0081) (0.0030)
30% Ratings 0.0239∗∗∗ 366 0.0118∗∗∗ 366

(0.0085) (0.0031)
50% Ratings 0.0269∗∗∗ 366 0.0088∗∗ 366

(0.0095) (0.0041)
70% Ratings 0.0117 366 0.0027 366

(0.0090) (0.0059)
90% Ratings 0.0147 366 -0.0004 366

(0.0090) (0.0062)

Notes: This table shows the change in demographics generated when dismissing the bottom
10% of teachers using three years of data. These models use the OLS models defined in
Section 4. The first row shows the change in performance generated when dismissing the
bottom 10% of teachers using mean summative ratings relative to no dismissals. The com-
parison group changes in the remaining rows. These rows record changes relative to the first
row using the models defined in the row header. The first column shows the change in the
fraction of male teachers, while the second column records the number of holdout observa-
tions. The remaining columns are defined similarly for the fraction of non-white teachers.

Standard errors generated using 1,000 bootstrapped samples in parentheses.
* p<0.10, ** p<0.05, *** p<0.01
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Table 5: Gains from Extending Pretenure from 1 to 3 Years: 10% Dismissal Rate

Math VA N ELA VA N Ratings N
Mean Ratings 0.0021 206 0.0070 229 0.0168∗∗∗ 375

(0.0057) (0.0057) (0.0057)
[0.0068] [0.0244] [0.0522]

Math using Math 0.0183 206 0.0185 69 0.0168 206
(0.0136) (0.0315) (0.0183)
[0.0594] [0.0645] [0.0523]

ELA using ELA -0.0053 69 0.0084 229 -0.0040 229
(0.0325) (0.0130) (0.0150)
[-0.0171] [0.0294] [-0.0125]

Ratings using Ratings -0.0053 206 0.0022 229 0.0196∗∗ 375
(0.0132) (0.0107) (0.0079)
[-0.0172] [0.0076] [0.0608]

Composite using
10% Ratings 0.0133 206 0.0119 229 0.0135 366

(0.0142) (0.0127) (0.0106)
[0.0433] [0.0417] [0.0420]

30% Ratings 0.0198 206 0.0147 229 0.0153 366
(0.0138) (0.0125) (0.0099)
[0.0641] [0.0513] [0.0475]

50% Ratings 0.0123 206 0.0159 229 0.0165∗ 366
(0.0138) (0.0121) (0.0095)
[0.0400] [0.0555] [0.0514]

70% Ratings 0.0052 206 0.0088 229 0.0234∗∗ 366
(0.0135) (0.0117) (0.0093)
[0.0168] [0.0307] [0.0727]

90% Ratings 0.0020 206 0.0058 229 0.0241∗∗∗ 366
(0.0132) (0.0111) (0.0088)
[0.0065] [0.0202] [0.0749]

Notes: This table shows the change in performance generated when extending the pretenure
period from 1 to 3 years and dismissing the bottom 10% of teachers measured in student
test score standard deviations or summative rating points. I use the OLS models defined
in Section 4. The row headers define the outcome and predictors. The first two columns
show the change in math value-added and number of holdout observations. The remaining
columns are defined similarly for ELA value-added and summative ratings.

Standard errors generated using 1,000 bootstrapped samples in parentheses. Performance
units rescaled to standard deviation 1 (teacher-level standard deviations) in the dataset are
included in brackets.

* p<0.10, ** p<0.05, *** p<0.01
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Table 6: Gains from Extending Pretenure from 1 to 3 Years: 50% Dismissal Rate

Math VA N ELA VA N Ratings N
Mean Ratings 0.0036 206 0.0188 229 0.0373∗∗∗ 375

(0.0164) (0.0147) (0.0135)
[0.0115] [0.0658] [0.1158]

Math using Math 0.0551∗∗ 206 0.0339 69 0.0525∗∗ 206
(0.0232) (0.0397) (0.0258)
[0.1787] [0.1184] [0.1630]

ELA using ELA 0.0386 69 0.0360 229 0.0417 229
(0.0430) (0.0232) (0.0255)
[0.1252] [0.1257] [0.1296]

Ratings using Ratings 0.0280∗∗ 206 0.0238∗∗ 229 0.0542∗∗∗ 375
(0.0132) (0.0107) (0.0079)
[0.0908] [0.0830] [0.1685]

Composite using
10% Ratings 0.0396∗ 206 0.0322 229 0.0453∗∗ 366

(0.0233) (0.0228) (0.0188)
[0.1285] [0.1125] [0.1408]

30% Ratings 0.0546∗∗ 206 0.0429∗∗ 229 0.0519∗∗∗ 366
(0.0217) (0.0218) (0.0177)
[0.1770] [0.1499] [0.1612]

50% Ratings 0.0715∗∗∗ 206 0.0403∗∗ 229 0.0666∗∗∗ 366
(0.0201) (0.0201) (0.0152)
[0.2319] [0.1408] [0.2068]

70% Ratings 0.0424∗∗ 206 0.0304 229 0.0689∗∗∗ 366
(0.0172) (0.0190) (0.0136)
[0.1374] [0.1060] [0.2139]

90% Ratings 0.0310∗∗ 206 0.0173 229 0.0539∗∗∗ 366
(0.0150) (0.0176) (0.0116)
[0.1006] [0.0604] [0.1673]

Notes: This table shows the change in performance generated when extending the pretenure
period from 1 to 3 years and dismissing the bottom 50% of teachers measured in student
test score standard deviations or summative rating points. I use the OLS models defined
in Section 4. The row headers define the outcome and predictors. The first two columns
show the change in math value-added and number of holdout observations. The remaining
columns are defined similarly for ELA value-added and summative ratings.

Standard errors generated using 1,000 bootstrapped samples in parentheses. Performance
units rescaled to standard deviation 1 (teacher-level standard deviations) in the dataset are
included in brackets.

* p<0.10, ** p<0.05, *** p<0.01
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Figures

Panel A: Math Value-Added Panel B: ELA Value-Added

Panel C: Summative Ratings

Figure 1: Performance Correlations

Notes: This figure plots the within-teacher correlation between each of the performance
measures. Following Jacob and Lefgren (2008), I correct for measurement error. The x-axis
measures the time between performance measures, while the y-axis measures the correlation
with the metric labeled in each graph. Solid black lines depict the correlations between the
y-axis variable and math value-added. Dashed red lines depict this relationship with ELA
value-added, while dashed and dotted blue lines depict this relationship with ratings.
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Figure 2: Retention and Mean Summative Ratings

Notes: This figure shows the relationship between mean summative ratings in years 1–3 and
retention rates. The x-axis records the mean pretenure summative rating in 10 equal-sized
bins, while the y-axis records the average retention rate within that bin. The sample is
restricted to holdout observations.
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Panel A: Math Value-Added Performance Panel B: Math Value-Added Retention

Panel C: ELA Value-Added Performance Panel D: ELA Value-Added Retention

Panel E: Summative Ratings Performance Panel F: Summative Ratings Retention

Figure 3: Actual Outcomes and Predicted Performance
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Notes: This figure shows the relationship between actual outcomes and predicted subsequent
performance in the holdout sample measured in student test score standard deviations or
summative rating points. I use the OLS models defined in Section 4 based on three years of
data. Panels A, C, and E show the relationship between predicted and actual performance,
while Panels B, D, and F show the relationship between predicted performance and retention
rates. Panels A and B use math value-added, Panels C and D use ELA value-added, and
Panels E and F use summative ratings. The x-axis records the mea predicted performance in
10 equal-sized bins, while the y-axis records the average actual performance or retention rate
within that bin. In the left graphs, I include 45◦ lines and the mean squared error (MSE) of
the predictions.
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Panel A: Average Summative Ratings Panel B: Math Value-Added Prediction Model

Panel C: ELA Value-Added Prediction Model Panel D: Summative Ratings Prediction
Model

Figure 4: Mean Performance by Percentile

Notes: This figure plots the mean subsequent performance when changing minimum perfor-
mance standards measured in student test score standard deviations or summative rating
points. Panel A uses mean summative ratings in the teacher’s first three years. Panels B–D
use the OLS models defined in Section 4 based on three years of data. The x-axis shows
the minimum percentile retained and the y-axis shows the performance of retained teachers.
The left y-axis measures value-added student test score standard deviations, while the right
y-axis measures summative rating points. The solid black line shows math value-added,
while the dashed red line shows ELA value-added. The dashed and dotted blue line shows
summative ratings.
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Panel A: 10% Summative Rating Weight Panel B: 30% Summative Rating Weight

Panel C: 50% Summative Rating Weight Panel D: 70% Summative Rating Weight

Panel E: 90% Summative Rating Weight

Figure 5: Mean Performance by Percentile using Composite Measure
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Notes: This figure plots the mean subsequent performance when changing minimum perfor-
mance standards measured in student test score standard deviations or summative rating
points. I use the OLS models defined in Section 4 based on three years of data. To estimate
the model, I use the composite measure defined in Section 4 based on the weights defined in
each graph’s title. The x-axis shows the minimum percentile retained and the y-axis shows
the performance of retained teachers. The left y-axis measures value-added student test
score standard deviations, while the right y-axis measures summative rating points. The
solid black line shows math value-added, while the dashed red line shows ELA value-added.
The dashed and dotted blue line shows summative ratings.
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Figure 6: Optimal Summative Rating Weight Given Utility Weight

Notes: This figure plots the optimal summative rating weights on the composite measure
given the summative rating weight in the utility function described in equation (3). The
x-axis records the utility weight placed on summative ratings, while the y-axis records the
optimal ratings weight on the composite measures based on OLS models defined in Section
4.
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Panel A: Average Summative Ratings Panel B: Math Value-Added Prediction Model

Panel C: ELA Value-Added Prediction Model Panel D: Summative Ratings Prediction
Model

Panel E: 50% Summative Rating Weight Composite

Figure 7: Mean Demographics by Percentile using ML
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Notes: This figure plots the mean gender and race of retained teachers when changing
minimum performance standards. Panel A uses mean summative ratings in the teacher’s
first three years. Panels B–E use the OLS models defined in Section 4 based on three years
of data. Panel E uses the composite measure defined in Section 4 with 50% weight on value-
added and 50% weight on summative ratings. The x-axis shows the minimum percentile
retained and the y-axis shows the demographics of retained teachers. The solid black line
shows the results for race, while the dashed and dotted blue line shows the results for gender.
The non-white category includes Black and Hispanic teachers.
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Panel A: Math Value-Added by Gender Panel B: Math Value-Added by Race

Panel C: ELA Value-Added by Gender Panel D: ELA Value-Added by Race

Panel E: Summative Ratings by Gender Panel F: Summative Ratings by Race

Figure 8: Performance CDF by Gender and Race
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Notes: This figure shows the cumulative density of performance by gender (Panels A, C,
and E) and race (Panels B, D, and F) measured in student test score standard deviations
or summative rating points. The x-axis records performance, while the y-axis records the
density. For gender, dashed red lines show female teachers, while dashed and dotted blue
lines depict male teachers. For race, dashed red lines show white teachers, while solid black
lines depict non-white teachers.
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Panel A: Average Summative Ratings Panel B: Math Value-Added Prediction Model

Panel C: ELA Value-Added Prediction Model Panel D: Summative Ratings Prediction
Model

Panel E: 50% Summative Rating Weight Composite

Figure 9: Extending Pretenure Period from 1 to 3 Years using Composite Ranking
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Notes: This figure plots the change in average subsequent performance when using 3 years
of data rather than 1 year of data measured in student test score standard deviations or
summative rating points. Panel A uses mean summative ratings. Panels B–E use the OLS
models defined in Section 4. Panel E uses the composite measure defined in Section 4 with
50% weight on value-added and 50% weight on summative ratings. The x-axis shows the
minimum percentile retained and the y-axis shows the change in performance of retained
teachers when extending the pretenure period from 1 to 3 years. The solid black line shows
math value-added, while the dashed red line shows ELA value-added. The dashed and dotted
blue line shows summative ratings.
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Panel A: Math Value-Added 10% Dismissal Panel B: Math Value-Added 50% Dismissal

Panel C: ELA Value-Added 10% Dismissal Panel D: ELA Value-Added 50% Dismissal

Panel E: Summative Ratings 10% Dismissal Panel F: Summative Ratings 50% Dismissal

Figure 10: Performance Distribution and Noise
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Notes: This figure plots performance kernel densities measured in student test score standard
deviations or summative rating points. Panels A and B show the results for math value-
added. In Panel A, the vertical line shows the 10th percentile performance. The red dashed
line shows annual within-teacher variation at 0.2 student test score standard deviation stan-
dard deviations below the 10th percentile, while the dotted line shows within-teacher variation
in three-year pretenure performance. The standard deviations are calculated using the mean
squared errors of annual performance relative to career performance for observations within
0.1 student test score standard deviations. The red area represents the additional density
of top 90 percentile teachers correctly classified using three years rather than one year of
data. The distributions are scaled to the density of career value-added at that point. Panel
B is defined similarly for 50th percentile teachers. Panels C–F are defined similarly for ELA
value-added and summative ratings.
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A Appendix

A.1 New Jersey Summative Rating Implementation

Teacher summative ratings were carefully implemented in New Jersey following the pas-

sage of the 2012 Teacher Effectiveness and Accountability for the Children of New Jersey

(TEACHNJ) Act (State of New Jersey Department of Education, 2017). This law provided

districts with the autonomy to implement their own evaluation systems. These ratings pro-

vided greater score differentiation than the previous two-tier rating system. In addition,

teacher summative ratings have improved over time, which may be attributable to clearer

expectations for good teaching, additional opportunities for feedback, and the use of data to

improve teacher practice.

A.2 Transition from NJASK and HSPA to PARCC

The transition from the NJASK and HSPA to the PARCC in 2014 could confound the results

if the estimated value-added differed between the tests. To evaluate the reliability of the

value-added estimate across tests, I measure the within-teacher correlation in value-added

across years. If the correlation in teacher-year value-added within one test (NJASK/HSPA

or PARCC) matches the correlation in teacher-year value-added across tests (between the

NJASK/HSPA and PARCC), the assessments likely estimate a similar value-added.

Table A9 shows the value-added correlations within teachers over time. In Panel A, the

math value-added correlations across tests are similar to the correlations within tests. For

example, the correlation between 2015 and 2016 PARCC math value-added is 0.43, while the

correlation between 2014 NJASK and 2015 PARCC math value-added is 0.42. In Panel B,

the ELA value-added correlations are higher within tests than across tests. However, since I

find no evidence of math value-added bias and all the value-added results are similar across

subjects, the test transition appears to generate little bias.
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A.3 Imputing Missing Data

Imputed performance may be biased if retention criteria rely on unobserved characteristics

that impact subsequent performance (Kleinberg et al., 2017). In this context, there is limited

scope for using unobserved traits because ratings capture many characteristics that would

typically be unobserved, such as ineffective pedagogy and poor professionalism. Nonetheless,

I must impute E[yj|xj] = E[f(xj)|xj] = f(xj) for teachers who leave the profession, where

yj is the subsequent performance of teacher j and f(xj) is a flexible function of the teacher’s

previous summative rating, xj. However, the data only allow me to estimate E[yj|xj, rj =

1], where rj is an indicator function defining retention. If the conditional expectation is

independent of retention, the imputation will be unbiased. Thus, I assume:

E[yj|xj] = E[yj|xj, rj = 1]. (4)

To evaluate this assumption, I leverage district dismissal residuals. Districts retain some

discretion when dismissing low-performing teachers, particularly for pretenured teachers with

annual contracts. This allows districts to retain teachers using unobserved characteristics

that are not captured by ratings. For instance, supervisors may recognize that one teacher

earning low summative ratings has great potential, so they offer an additional opportunity

for this teacher to improve.

Suppose these unobserved characteristics, sj, are independent of xj and increase perfor-

mance additively by g(sj) where g(·) is a flexible function and E[g(sj)] = 0. Then, I can

rewrite the conditional expectation as follows:

E[yj|xj, rj = 1] = E[f(xj)|xj, rj = 1] + E[g(sj)|xj, rj = 1]

= f(xj) + E[g(sj)|rj = 1].

For equation (4) to hold, I must show that E[g(sj)|rj = 1] = 0. First, I partition

the sample into low-dismissal districts that only rely on observed characteristics and high-
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dismissal districts that also consider unobserved characteristics. For example, low-dismissal

districts retain all teachers near the margin of ineffective teaching, while high-dismissal

districts only keep marginal teachers if they have great potential that is not reflected in

the ratings. Referring back to the theoretical framework, let F (·) and G(·) be flexible

functions. In low-dismissal districts, rj = 1 if F (xj) > 0 because they only rely on observed

characteristics. In high-dismissal districts, rj = 1 if F (xj) +G(sj) > 0 because they rely on

both observed and unobserved characteristics.

I estimate a model on high-dismissal districts to estimate E[yj|xj, rj = 1] = f(xj) +

E[g(sj)|rj = 1]. A prediction estimated on high-dismissal districts would incorporate any

positive selection generated by these districts that select on unobserved characteristics.

In comparison, the actual performance in low-dismissal districts provides an estimate of

E[yj|xj] = f(xj) because these districts ignore unobserved characteristics.52 By comparing

predicted performance (E[yj|xj, rj = 1]) to actual performance (E[yj|xj]) in the low-dismissal

districts, I test whether E[g(sj)|rj = 1] = 0.

In practice, I cannot determine which districts rely on unobserved characteristics. How-

ever, I can observe retention rates conditional on summative ratings. Consequently, I parti-

tion districts into high-dismissal and low-dismissal halves using the following regression:

rjt = βxjt + δt + εjt. (5)

I regress the retention of teacher j after year t (rjt) on summative ratings (xjt) and year

fixed effects (δt). To measure district dismissal residuals, I calculate the mean residual (εjt)

for all teachers in the district other than teacher j. This leave-one-out mean avoids biasing a

district’s retention residuals by using the teacher’s own retention decision. Positive residuals

suggest teachers were retained more often than expected, while negative residuals suggest

teachers were retained less often than expected. Figure A2 plots the positive relationship

between leave-one-out mean district retention residual and teacher retention. Thus, I parti-

52 For low-dismissal districts, E[g(sj)|rj = 1] = E[g(sj)|F (xj) > 0] = E[g(sj)] = 0.
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tion the leave-one-out mean residuals into high-dismissal (below median) and low-dismissal

(above median) halves.53 Since high-dismissal districts retain fewer teachers conditional on

ratings, I assume that these districts rely on both summative ratings (observed) and un-

observed characteristics, while low-dismissal districts only rely on summative ratings. This

partition also relies on a monotonicity assumption. I assume that any teacher retained in a

high-dismissal district also would have been retained in a low-dismissal district.54

Ideally, I would focus on involuntary dismissals to identify high-dismissal and low-dismissal

districts. Unfortunately, I cannot distinguish between voluntary and involuntary turnover.55

Therefore, I may misclassify low-dismissal districts as high-dismissal districts if they have

high rates of voluntary teacher attrition. I would expect this problem to be especially

prevalent in hard-to-staff districts that have difficulty filling vacancies and retaining teach-

ers. These hard-to-staff districts tend to have high poverty rates and low proficiency rates.

To evaluate this concern, I compare the characteristics of high-dismissal and low-dismissal

districts in Table A10. Relative to high-dismissal districts (second column), low-dismissal

districts (first column) have higher poverty (FRPL) rates, more ELL students, lower profi-

ciency rates, and more minority students. All these differences are statistically significant at

the 1% level as seen in the third column. This suggests that low-dismissal districts actually

have the characteristics of hard-to-staff districts. With high voluntary attrition rates but

low turnover rates conditional on summative ratings, the low-dismissal districts would have

few opportunities to select on unobserved characteristics as they attempt to retain as many

teachers as possible. As a result, voluntary attrition is unlikely to cause the misclassification

of high-dismissal and low-dismissal districts in equation (5).

After dividing the sample, I estimate an OLS model on the high-dismissal districts. I use

the first three years of math value-added and summative ratings to predict subsequent math

53 The results are similar when using different deciles to partition the sample into high-dismissal and
low-dismissal districts (not shown).

54 To primarily focus on pretenure dismissal residuals, this exercise relies on the same sample of novice
teachers as the main analysis.

55 In fact, it is very difficult to identify voluntary and involuntary turnover in any dataset. For example,
some teachers may appear to voluntarily leave the district if they knew that they would soon be dismissed.
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value-added and repeat the process for ELA value-added. I then use the first three years of

summative ratings and the first three years of average non-missing value-added to predict

subsequent summative ratings.

Figure A3 plots the relationship between predicted and actual performance using pre-

diction models estimated on high-dismissal districts and applied to low-dismissal districts.

I include a 45-degree line and calculate the average difference between true and predicted

outcomes. The average differences are statistically indistinguishable from 0 ranging from

-0.011 to 0.022 student test score standard deviations or summative rating points. Thus,

I fail to reject the null hypothesis that E[g(sj)|rj = 1] = 0, so equation (4) holds.56 I do

not find any evidence that districts use unobserved characteristics that impact subsequent

performance to selectively retain teachers.57

A.4 Machine Learning Algorithm

In this section, I estimate the same models as described in Section 4 but use machine learning

techniques rather than OLS. In analogous settings, several studies have used machine learning

algorithms to predict performance (Kleinberg et al., 2017; Athey et al., 2007; Chandler et

al., 2011; Abaluck et al., 2016). These studies leverage the strengths of machine learning

(making predictions) rather than its weaknesses (estimating causal effects) (Mullainathan &

Spiess, 2017; Kleinberg et al., 2015). For example, Kleinberg et al. (2017) evaluate whether

these algorithms can improve bail decisions by simultaneously minimizing jailing and crime

rates.

Specifically, I use random forests, which generate algorithms that sort teachers into bins of

predicted performance. Although the coefficients lack causal interpretations, the algorithms

account for nonlinear relationships to effectively predict outcomes (Mullainathan & Spiess,

56 All results are robust to including district retention residuals as a predictor to impute performance
(not shown).

57 I also must account for this imputation when calculating standard errors. To do so, I bootstrap each
sample prior to imputing missing data. This incorporates imputation error into the calculation of standard
errors.
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2017; Kleinberg et al., 2015).

Random forests estimate a series of regression trees where each tree predicts subsequent

performance by splitting the sample at nodes based on previous performance. While re-

gression trees can perfectly fit in-sample data, this procedure would lead to overfitting for

out-of-sample predictions. To overcome this source of bias, random forests create 500 boot-

strapped datasets. In each dataset, I estimate a regression tree based on a randomly selected

1
3
of the total regressors. I continue to use 40% of the sample to impute missing performance

data, another 40% to estimate the algorithm, and the remaining 20% to conduct the analysis.

Table 2 shows the baseline results comparing no dismissals to 10% dismissals using mean

summative ratings (top row) and changes relative to the current system (remaining rows).

The random forest estimates are very similar to the OLS results in Table 1.

A.5 Detecting Bias in the Data

In Section 4.2, I find that male and non-white teachers earn lower ratings despite having

similar value-added. These rating disparities also appeared in previous research (Bailey et

al., 2016; Drake et al., 2019; Sartain & Steinberg, 2020; Ng, 2022; Chi, 2021; Grissom &

Bartanen, 2022). In this section, I provide several tests to detect the presence of gender and

racial biases in the results.

First, I evaluate biases by including teacher gender and race in the prediction models.

In Table A11, I estimate the improvements in average teacher performance when using a

10% dismissal rate, three years of performance data, and demographics.58 With nearly

identical results to Table 1, Table A11 shows demographic data do not improve the model’s

prediction accuracy. For example, the composite measure with 50% weight on summative

ratings shows ratings do not change, while value-added increases by 0.0129–0.0140 student

test score standard deviations relative to the current system. Since these values are identical

to those from Table 1, demographic data do not appear to affect the prediction models.

58 To maintain consistency with the results from Section 4, I continue to impute the data only using
performance measures.
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Next, I test for differences in residuals generated by the OLS models in Table A12.

Specifically, I subtract the predicted performance from the actual performance for each

group separately. Then, I calculate the difference between the residuals across groups. In

the female-male (white-non-white) comparison, a negative value suggests that the model

underpredicts male (non-white) teacher performance relative to female (white) teacher per-

formance. Although some of the point estimates are non-negligible, I do not identify any

statistically significant differences or clear pattern of results across the performance measures.

For example, the math value-added model underpredicts male and non-white performance

by 0.0151 and 0.0192 student test score standard deviations, respectively. However, the

ELA value-added model overpredicts male and non-white performance by 0.0174 and 0.0186

student test score standard deviations, respectively.59

Although I find summative rating disparities by gender and race in Table 3, these tests

do not provide any conclusive evidence that discrimination is biasing the estimated results.

However, some of the tests are underpowered and rely on prior summative rating data,

which may be inherently biased. Ideally, I would predict summative ratings using a more

objective measure, such as value-added. Unfortunately, the correlation between value-added

and summative ratings is too weak for one to predict the other. While I do not find any

evidence that discrimination is biasing the OLS models, I cannot completely eliminate this

possibility.

59 The presence of heterogeneity also would suggest that discrimination may be impacting the models.
However, I find no heterogeneity by teacher, school, and student characteristics (not shown).
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A.6 Appendix Tables

Table A1: Summative Rating Weights By Year and Subject

2014, 2017, 2018 2015, 2016
ELA 4-8 Other ELA 4-8 Other
Math 4-7 Math 4-7

Teacher Practice 55% 85% 70% 80%
SGO - District 15% 15% 20% 20%
mSGP - State 30% 10%

Notes: This table shows summative rating weights. The first two columns record the weights
for the academic years ending in 2014, 2017, and 2018. The first column provides weights
for high stakes subjects where standardized tests impact the summative ratings. The second
column provides weights for all other teachers. The third and fourth columns are defined
similarly for the academic years ending in 2015 and 2016. In this table, SGOs and mS-
GPs are acronyms for Student Growth Objectives and median Student Growth Percentiles,
respectively.
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Table A2: Summary Statistics

Students Teachers
Female 0.484 0.818

(0.500) (0.386)
Black 0.197 0.062

(0.398) (0.242)
Hispanic 0.271 0.078

(0.445) (0.268)
Non-white 0.402 0.135

(0.490) (0.342)
Urban 0.911 0.910

(0.285) (0.286)
FRPL 0.377

(0.485)
ELL 0.045

(0.207)
Special Ed. 0.194

(0.395)
Math Proficient 0.528

(0.499)
ELA Proficient 0.582

(0.493)
Graduate Degree 0.334

(0.472)
Experience 2.901

(1.436)
Years in District 2.734

(1.452)
Summative Rating 3.268

(0.312)
Obs 12405063 24012
Unique Obs 2164750 10329

Notes: This table provides summary statistics at the student-year and teacher-year levels.
The row headers define the variable. The first column provides the student-year summary
statistics, while the second column provides the teacher-year summary statistics. The stan-
dard deviations of each value are listed in parentheses below the means. The final two rows
count the number of observations and the number of unique individuals in the sample. The
non-white category includes Black and Hispanic, which are not mutually exclusive.
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Table A3: Sample Restrictions

Math VA ELA VA Ratings
Teachers with Non-Missing Data 40,484 45,686 154,671
Has Both VA and Ratings 33,443 37,487 51,634
Has Year 1 Performance 2,865 3,162 4,714
Has Performance up to Year 3 1,051 1,160 1,904
Estimating Sample 428 487 785
Imputing Sample 417 444 744
Holdout Sample 206 229 375

Notes: This table shows the number of observations remaining after each sample restriction.
The first column records the number of teachers used for the math value-added analysis.
The second and third columns are defined similarly for ELA value-added and summative
ratings, respectively. The first row includes all teachers with the performance measure listed
in the column header. In the second row, I restrict the sample to math and ELA teachers
with both value-added and summative ratings. In the third row, I restrict the sample to
novice teachers with performance data in year 1. In the fourth row, I restrict the sample to
teachers with performance data in years 1, 2, and 3. The final three rows record the number
of observations in the estimating, imputing, and holdout samples. These samples represent
approximately 40%, 40%, and 20% of the remaining sample, respectively.
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Table A4: Difference in Performance using OLS

Math VA N ELA VA N Ratings N
Mean Ratings (Baseline) 0.0122 69 0.0147 69 0.0374∗∗∗ 69

(0.0125) (0.0126) (0.0137)
[0.0394] [0.0514] [0.1162]

Math using Math 0.0169 69 -0.0043 69 -0.0154 69
(0.0125) (0.0126) (0.0137)
[0.0549] [-0.0151] [-0.0478]

ELA using ELA -0.0167 69 0.0029 69 -0.0422∗ 69
(0.0253) (0.0164) (0.0217)
[-0.0540] [0.0103] [-0.1311]

Ratings using Ratings 0.0022 69 -0.0010 69 -0.0057 69
(0.0123) (0.0118) (0.0121)
[0.0072] [-0.0033] [-0.0176]

Composite using
10% Ratings 0.0153 69 0.0044 69 -0.0138 69

(0.0146) (0.0119) (0.0160)
[0.0495] [0.0153] [-0.0429]

30% Ratings 0.0200 69 0.0113 69 -0.0098 69
(0.0129) (0.0108) (0.0124)
[0.0649] [0.0396] [-0.0304]

50% Ratings 0.0159 69 0.0109 69 -0.0017 69
(0.0125) (0.0106) (0.0117)
[0.0515] [0.0381] [-0.0054]

70% Ratings 0.0167 69 0.0149 69 -0.0017 69
(0.0111) (0.0095) (0.0114)
[0.0541] [0.0522] [-0.0051]

90% Ratings 0.0010 69 -0.0008 69 -0.0079 69
(0.0120) (0.0114) (0.0123)
[0.0033] [-0.0028] [-0.0246]

Notes: This table estimates the change in performance generated when dismissing the bottom
10% of teachers using three years of data measured in student test score standard deviations
or summative rating points. These models use OLS regressions defined in Section 4. I
restrict the sample to only teachers with non-missing math value-added, ELA value-added,
and summative ratings to keep samples constant across rows and columns. The row headers
define the model’s outcome and predictors. The first row shows the change in performance
generated when dismissing the bottom 10% of teachers using mean summative ratings relative
to no dismissals. The comparison group changes in the remaining rows. These rows record
changes relative to the first row using the models defined in the row header. The first two
columns show the change in math value-added and number of holdout observations. The
remaining columns are defined similarly for ELA value-added and summative ratings.
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Standard errors generated using 1,000 bootstrapped samples in parentheses. Performance
units rescaled to standard deviation 1 (teacher-level standard deviations) in the dataset are
included in brackets.

* p<0.10, ** p<0.05, *** p<0.01
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Table A5: Difference in Performance using All Teachers

Math VA N ELA VA N Ratings N
Mean Ratings (Baseline) 0.0060∗∗∗ 3,367 0.0036∗∗∗ 3,791 0.0395∗∗∗ 5,967

(0.0012) (0.0010) (0.0012)
[0.0193] [0.0125] [0.1229]

Math using Math 0.0187∗∗∗ 3,367 0.0128∗∗∗ 1,304 -0.0322∗∗∗ 3,367
(0.0015) (0.0029) (0.0022)
[0.0607] [0.0445] [-0.1001]

ELA using ELA 0.0121∗∗∗ 1,304 0.0193∗∗∗ 3,791 -0.0271∗∗∗ 3,791
(0.0028) (0.0014) (0.0022)
[0.0394] [0.0673] [-0.0841]

Ratings using Ratings 0.0007 3,367 -0.0005 3,791 0.0021∗∗∗ 5,967
(0.0009) (0.0008) (0.0007)
[0.0023] [-0.0017] [0.0066]

Composite using
10% Ratings 0.0174∗∗∗ 3,367 0.0190∗∗∗ 3,791 -0.0258∗∗∗ 5,854

(0.0017) (0.0015) (0.0017)
[0.0565] [0.0663] [-0.0800]

30% Ratings 0.0163∗∗∗ 3,367 0.0158∗∗∗ 3,791 -0.0134∗∗∗ 5,854
(0.0014) (0.0013) (0.0014)
[0.0527] [0.0552] [-0.0417]

50% Ratings 0.0115∗∗∗ 3,367 0.0114∗∗∗ 3,791 -0.0037∗∗∗ 5,854
(0.0012) (0.0012) (0.0011)
[0.0372] [0.0400] [-0.0114]

70% Ratings 0.0081∗∗∗ 3,367 0.0064∗∗∗ 3,791 0.0003 5,854
(0.0010) (0.0010) (0.0009)
[0.0262] [0.0225] [0.0010]

90% Ratings 0.0035∗∗∗ 3,367 0.0013 3,791 0.0017∗∗ 5,854
(0.0009) (0.0008) (0.0007)
[0.0113] [0.0045] [0.0053]

Notes: This table shows the change in performance generated when dismissing the bottom
10% of teachers using OLS models defined in Section 4 and three years of data measured
in student test score standard deviations or summative rating points. In this table, I use
all teachers in my dataset rather than just novice teachers. The first row shows the change
in performance generated when dismissing the bottom 10% of teachers using mean sum-
mative ratings relative to no dismissals. The comparison group changes in the remaining
rows. These rows record changes relative to the first row using the models defined in the
row header. The first two columns show the change in math value-added and number of
holdout observations. The remaining columns are defined similarly for ELA value-added
and summative ratings.

Standard errors generated using 1,000 bootstrapped samples in parentheses. Performance
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units rescaled to standard deviation 1 (teacher-level standard deviations) in the dataset are
included in brackets.

* p<0.10, ** p<0.05, *** p<0.01
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Table A6: Difference in Composite Performance using OLS with Flexible Inputs

Math VA N ELA VA N Ratings N
Composite using
10% Ratings 0.0236∗∗∗ 206 0.0119∗ 229 -0.0159∗∗ 366

(0.0082) (0.0064) (0.0077)
[0.0766] [0.0417] [-0.0495]

30% Ratings 0.0192∗∗∗ 206 0.0143∗∗ 229 -0.0090 366
(0.0072) (0.0056) (0.0059)
[0.0621] [0.0500] [-0.0279]

50% Ratings 0.0153∗∗ 206 0.0115∗∗ 229 -0.0033 366
(0.0069) (0.0054) (0.0054)
[0.0496] [0.0403] [-0.0103]

70% Ratings 0.0132∗∗ 206 0.0095∗ 229 0.0018 366
(0.0059) (0.0053) (0.0046)
[0.0428] [0.0333] [0.0056]

90% Ratings 0.0080 206 0.0042 229 0.0071∗∗ 366
(0.0050) (0.0045) (0.0034)
[0.0259] [0.0147] [0.0221]

Notes: This table estimates the change in performance generated when dismissing the bottom
10% of teachers using three years of data measured in student test score standard deviations
or summative rating points. These models use OLS regressions defined in Section 4, but
regress the composite measure in each row on summative ratings and average value-added in
each of the first three years. The values record the change in performance when dismissing
the bottom 10% of teachers using the given model, compared to the average performance
when dismissing the bottom 10% of teachers using mean summative ratings. The first two
columns show the change in math value-added and number of holdout observations. The
remaining columns are defined similarly for ELA value-added and summative ratings.

Standard errors generated using 1,000 bootstrapped samples in parentheses. Performance
units rescaled to standard deviation 1 (teacher-level standard deviations) in the dataset are
included in brackets.

* p<0.10, ** p<0.05, *** p<0.01
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Table A7: Gains from Extending Pretenure from 1 to 2 Years: 10% Dismissal Rate

Math VA N ELA VA N Ratings N
Mean Ratings 0.0066∗ 324 0.0082∗∗ 358 0.0054 567

(0.0037) (0.0039) (0.0047)
[0.0214] [0.0288] [0.0167]

Math using Math 0.0012 324 0.0034 124 -0.0035 324
(0.0106) (0.0255) (0.0142)
[0.0039] [0.0117] [-0.0108]

ELA using ELA -0.0076 124 0.0016 358 -0.0004 358
(0.0245) (0.0110) (0.0137)
[-0.0247] [0.0057] [-0.0013]

Ratings using Ratings -0.0003 324 0.0060 358 0.0060 567
(0.0090) (0.0092) (0.0055)
[-0.0010] [0.0208] [0.0186]

Composite using
10% Ratings 0.0033 324 0.0092 358 0.0016 558

(0.0102) (0.0106) (0.0085)
[0.0107] [0.0321] [0.0050]

30% Ratings 0.0125 324 0.0065 358 0.0021 558
(0.0096) (0.0102) (0.0082)
[0.0405] [0.0225] [0.0065]

50% Ratings 0.0062 324 0.0055 358 0.0041 558
(0.0095) (0.0101) (0.0075)
[0.0200] [0.0193] [0.0128]

70% Ratings 0.0024 324 0.0132 358 0.0010 558
(0.0094) (0.0093) (0.0069)
[0.0079] [0.0462] [0.0031]

90% Ratings -0.0006 324 0.0053 358 0.0066 558
(0.0092) (0.0092) (0.0063)
[-0.0020] [0.0184] [0.0204]

Notes: This table shows the change in performance generated when extending the pretenure
period from 1 to 2 years and dismissing the bottom 10% of teachers measured in student
test score standard deviations or summative rating points. I use the OLS models defined
in Section 4. The row headers define the outcome and predictors. The first two columns
show the change in math value-added and number of holdout observations. The remaining
columns are defined similarly for ELA value-added and summative ratings.

Standard errors generated using 1,000 bootstrapped samples in parentheses. Performance
units rescaled to standard deviation 1 (teacher-level standard deviations) in the dataset are
included in brackets.

* p<0.10, ** p<0.05, *** p<0.01
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Table A8: Gains from Extending Pretenure from 2 to 3 Years: 10% Dismissal Rate

Math VA N ELA VA N Ratings N
Mean Ratings -0.0047 206 -0.0012 229 0.0072 375

(0.0048) (0.0046) (0.0061)
[-0.0154] [-0.0042] [0.0223]

Math using Math 0.0132 206 0.0104 69 0.0129 206
(0.0143) (0.0335) (0.0177)
[0.0428] [0.0363] [0.0401]

ELA using ELA 0.0111 69 0.0099 229 0.0055 229
(0.0337) (0.0124) (0.0191)
[0.0358] [0.0344] [0.0170]

Ratings using Ratings -0.0043 206 -0.0027 229 0.0108 375
(0.0131) (0.0111) (0.0088)
[-0.0140] [-0.0095] [0.0335]

Composite using
10% Ratings 0.0099 206 0.0035 229 0.0146 366

(0.0140) (0.0124) (0.0115)
[0.0322] [0.0123] [0.0453]

30% Ratings 0.0063 206 0.0088 229 0.0165 366
(0.0139) (0.0117) (0.0113)
[0.0203] [0.0308] [0.0512]

50% Ratings 0.0025 206 0.0074 229 0.0147 366
(0.0136) (0.0115) (0.0110)
[0.0081] [0.0258] [0.0458]

70% Ratings 0.0088 206 -0.0029 229 0.0194∗ 366
(0.0131) (0.0113) (0.0103)
[0.0287] [-0.0101] [0.0602]

90% Ratings 0.0058 206 0.0044 229 0.0148 366
(0.0135) (0.0111) (0.0102)
[0.0188] [0.0152] [0.0461]

Notes: This table shows the change in performance generated when extending the pretenure
period from 2 to 3 years and dismissing the bottom 10% of teachers measured in student
test score standard deviations or summative rating points. I use the OLS models defined
in Section 4. The row headers define the outcome and predictors. The first two columns
show the change in math value-added and number of holdout observations. The remaining
columns are defined similarly for ELA value-added and summative ratings.

Standard errors generated using 1,000 bootstrapped samples in parentheses. Performance
units rescaled to standard deviation 1 (teacher-level standard deviations) in the dataset are
included in brackets.

* p<0.10, ** p<0.05, *** p<0.01
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Table A9: Annual VA Correlation by Year

Panel A: Math Value-Added

2013 2014 2015 2016 2017 2018
NJASK:2013 1.00
NJASK:2014 0.46 1.00
PARCC:2015 0.36 0.42 1.00
PARCC:2016 0.33 0.41 0.43 1.00
PARCC:2017 0.34 0.39 0.39 0.47 1.00
PARCC:2018 0.30 0.37 0.38 0.46 0.50 1.00

Panel B: ELA Value-Added

2013 2014 2015 2016 2017 2018
NJASK:2013 1.00
NJASK:2014 0.37 1.00
PARCC:2015 0.25 0.25 1.00
PARCC:2016 0.26 0.28 0.37 1.00
PARCC:2017 0.23 0.25 0.32 0.41 1.00
PARCC:2018 0.23 0.25 0.33 0.39 0.43 1.00

Notes: This table shows within-teacher math (Panel A) and ELA (Panel B) value-added
correlations over time. The rows and columns define the test year used to generate the
value-added estimate. NJASK exams were administered in 2013 and 2014, while PARCC
exams were administered from 2015 to 2018.
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Table A10: Summary Statistics by District Dismissal Residual

Low-Dismissal High-Dismissal Difference
FRPL 0.452 0.296 0.156∗∗∗

(0.297) (0.256) (0.006)
ELL 0.079 0.046 0.033∗∗∗

(0.079) (0.064) (0.002)
Math Proficient 0.476 0.565 -0.088∗∗∗

(0.164) (0.159) (0.004)
ELA Proficient 0.521 0.622 -0.101∗∗∗

(0.175) (0.155) (0.004)
Black 0.196 0.160 0.036∗∗∗

(0.187) (0.208) (0.005)
Hispanic 0.339 0.220 0.119∗∗∗

(0.284) (0.212) (0.006)
Observations 3,826 3,826

Notes: This table provides summary statistics for low-dismissal and high-dismissal districts
calculated at the district level. I define low-dismissal (high-dismissal) districts as those with
above (below) median leave-one-out average residuals from equation (5). The row headers
define the variable. The first column provides statistics for low-dismissal districts, while
the second column provides statistics for high-dismissal districts. The standard deviations
of each value are listed in parentheses below the means. The final column calculates the
difference in means and provides the significance level from a T-test of equality.

* p<0.10, ** p<0.05, *** p<0.01

75



Table A11: Difference in Performance with Demographics: 10% Dismissal Rate

Math VA N ELA VA N Ratings N
Mean Ratings (Baseline) 0.0031 206 0.0116∗∗ 229 0.0343∗∗∗ 375

(0.0065) (0.0052) (0.0052)
[0.0101] [0.0404] [0.1066]

Math using Math 0.0265∗∗∗ 206 -0.0015 69 -0.0098 206
(0.0064) (0.0115) (0.0074)
[0.0858] [-0.0051] [-0.0305]

ELA using ELA -0.0097 69 0.0137∗∗ 229 -0.0363∗∗∗ 229
(0.0232) (0.0065) (0.0101)
[-0.0316] [0.0477] [-0.1128]

Ratings using Ratings -0.0074 206 -0.0048 229 0.0027 375
(0.0058) (0.0041) (0.0036)
[-0.0241] [-0.0168] [0.0085]

Composite using
10% Ratings 0.0246∗∗∗ 206 0.0141∗∗ 229 -0.0161∗∗∗ 366

(0.0071) (0.0058) (0.0062)
[0.0797] [0.0494] [-0.0499]

30% Ratings 0.0200∗∗∗ 206 0.0154∗∗∗ 229 -0.0091∗ 366
(0.0070) (0.0058) (0.0052)
[0.0647] [0.0537] [-0.0283]

50% Ratings 0.0129∗∗ 206 0.0140∗∗∗ 229 -0.0017 366
(0.0061) (0.0052) (0.0050)
[0.0420] [0.0488] [-0.0054]

70% Ratings 0.0075 206 0.0043 229 0.0055 366
(0.0046) (0.0043) (0.0034)
[0.0244] [0.0149] [0.0172]

90% Ratings -0.0014 206 0.0000 229 0.0074∗∗ 366
(0.0048) (0.0040) (0.0035)
[-0.0047] [-0.0000] [0.0229]

Notes: This table shows the change in performance generated when dismissing the bottom
10% of teachers using three years of data measured in student test score standard deviations
or summative rating points. These models add race (white or non-white) and gender as
predictors to the OLS models defined in Section 4. The first row shows the change in perfor-
mance generated when dismissing the bottom 10% of teachers using mean summative ratings
relative to no dismissals. The comparison group changes in the remaining rows. These rows
record changes relative to the first row using the models defined in the row header. The
first two columns show the change in math value-added and number of holdout observations.
The remaining columns are defined similarly for ELA value-added and summative ratings.

Standard errors generated using 1,000 bootstrapped samples in parentheses. Performance
units rescaled to standard deviation 1 (teacher-level standard deviations) in the dataset are
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included in brackets.
* p<0.10, ** p<0.05, *** p<0.01
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Table A12: Residual Difference by Group Using 3 Years of Data

Female - Male N White - Non-white N
Math using Math -0.0151 212 -0.0192 212

(0.0298) (0.0415)
[-0.0489] [-0.0621]

ELA using ELA 0.0174 232 0.0186 232
(0.0278) (0.0245)
[0.0606] [0.0650]

Ratings using Ratings -0.0044 390 -0.0139 390
(0.0200) (0.0237)
[-0.0137] [-0.0433]

Notes: This table compares group-wide average residuals generated by the OLS models
described in Section 4 measured in student test score standard deviations or summative
rating points. The row headers define the model’s outcome and predictors. The first two
columns show the difference between male and female teachers, while the second two columns
show the difference between white and non-white teachers. In the female-male (white-non-
white) comparison, a negative value suggests that the model underpredicts male (non-white)
teacher performance relative to female (white) teacher performance.

Standard errors generated using 1,000 bootstrapped samples in parentheses. Performance
units rescaled to standard deviation 1 (teacher-level standard deviations) in the dataset are
included in brackets.

* p<0.10, ** p<0.05, *** p<0.01
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A.7 Appendix Figures

Panel A: Math Value-Added Panel B: ELA Value-Added

Panel C: Summative Ratings

Figure A1: Relationship Between Previous and Subsequent Performance

Notes: This figure shows the relationship between year 3 performance and the actual sub-
sequent performance. The performance measure of interest is labeled in each graph. The
x-axis records the average year 3 performance in 10 equal-sized bins, while the y-axis records
the average subsequent performance within that bin. The graphs include a line of best fit
generated using a linear regression.
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Figure A2: Retention by Residualized Retention Rate

Notes: This figure plots a local quadratic regression of the retention rate against the leave-
one-out mean residual from equation (5). The x-axis records the leave-one-out mean residual,
while the y-axis shows the retention rate. The plotted line uses a local quadratic regression
with the Epanechnikov kernel and a bandwidth of 0.118. The shaded area shows the 95%
confidence interval. The graph is truncated at residuals of -0.3 and 0.3. This truncation
includes over 98% of the observations. Observations outside of this range are sparse and
generate noisy estimates.
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Panel A: Math Value-Added Panel B: ELA Value-Added

Panel C: Summative Ratings

Figure A3: Actual and Predicted Performance in Low-Dismissal Districts Estimated on
High-Dismissal Districts

Notes: This figure shows the relationship between predicted and actual subsequent perfor-
mance in low-dismissal districts based on models estimated in high-dismissal districts. I use
OLS models defined in Section 4 based on three years of data. The performance measure of
interest is labeled in each graph. The x-axis records the mea predicted performance in 10
equal-sized bins, while the y-axis records the average actual performance within that bin.
I define low-dismissal (high-dismissal) districts as those with above (below) median leave-
one-out average residuals from equation (5). In each graph, I include 45◦ lines, the mean
deviation, and the standard error of the deviation.
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