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ing choices. Much existing research has focused on only one of these margins—potentially
leading to an incomplete picture of the returns to STEM education for students with less
academic preparation. Using data from a Colombian university and two empirical strate-
gies, we find that less-prepared students have higher earnings returns to selective STEM
programs than more-prepared students, even though they are less likely to complete these
programs. A key mechanism is that less-prepared students have lower-paying counterfactual
schooling options.
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Many countries have policies to increase the number of college students who earn degrees
in science, technology, engineering, and mathematics (STEM). These policies often seek to
boost STEM enrollment by drawing in students from less advantaged backgrounds, who
may also be less prepared for STEM coursework on average. Research on field of study
often finds that there is a high earnings premium to a completed STEM degree (Altonji
et al., 2012; Kirkebøen et al., 2016), and policymakers hope that new STEM enrollees will
have similarly high returns. But other work shows that STEM programs have high dropout
rates, especially among students with relatively less academic preparation (Stinebrickner and
Stinebrickner, 2014; Arcidiacono et al., 2016), so these expansions may not necessarily help
the new marginal students. In this paper, we highlight that looking only at average returns
to completed degrees (as in, e.g., Altonji et al., 2012) or STEM completion rates (as in, e.g.,
Arcidiacono et al., 2016) does not speak to the returns to such policies, which depend on
both the likelihood of graduating and the returns conditional on graduating. We use data
from selective STEM programs at a flagship university in Colombia to jointly examine the
relationship between students’ completion rates and earnings returns—leading to a more
complete analysis of the costs and benefits of expanding STEM education to less-prepared
student populations. Our empirical strategy combines a regression discontinuity (RD) design
based on admission cutoffs with two sources of variation in the academic preparation of
marginal admits. This allows us to ask two questions: 1) How do more- and less-prepared
students vary in their completion rates and earnings to returns to enrolling in selective STEM
programs? and 2) What are the mechanisms for heterogeneity in these returns?

Our paper is novel in identifying how the returns to STEM enrollment vary explicitly along
the dimension of academic preparation for STEM coursework. There is growing evidence that
the earnings returns to attending a selective college are larger for students from disadvantaged
backgrounds than for advantaged students (Dale and Krueger, 2002; Chetty et al., 2020;
Bleemer, 2022; Black et al., 2023), including from papers that use RD designs similar to
our own (Saavedra, 2009; Zimmerman, 2014; Smith et al., 2020; Bleemer, 2021).1 But these
papers cannot directly look at heterogeneity in the returns to STEM enrollment because

1 There is a large literature on the earnings returns to college selectivity, and not all papers find that
these returns are higher for disadvantaged students. Zimmerman (2019) and Michelman et al. (2022) find
that the returns to attending elite colleges are larger for high-SES students, while Hastings et al. (2013) and
Mountjoy et al. (2020) do not find significant heterogeneity in the returns to college selectivity by race and/or
socioeconomic status. Canaan and Mouganie (2018) find that low-skilled students experience earnings gains
from attending more selective colleges in France, but these returns are larger for the high-SES students
within their sample. Andrews et al. (2016) find that the earnings gains to attending Texas A&M are largest
in low quantiles—consistent with larger benefits for disadvantaged students—but the opposite is true for the
returns to attending University of Texas Austin. Machado et al. (2022) find that attending an elite Brazilian
university leads to early-career earnings gains (only) for students admitted through affirmative action, but
these gains fade as individuals’ careers progress. Other papers find earnings gains to college selectivity but
do not examine heterogeneity (Hoekstra, 2009; Anelli, 2020; Sekhri, 2020).
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admissions are at the university level rather than the major level. There are only a few
papers that examine heterogeneity in the returns to STEM enrollment or STEM degrees, and
these papers tend to find, if anything, that students with less preparation have lower returns
than other students. Bertrand et al. (2010) find that the returns to attending selective
engineering programs in India are lower for affirmative action students than for general
track students, although they acknowledge that their results are underpowered. Arcidiacono
(2004) finds that the returns to a completed STEM degree are increasing in SAT math scores,
but this result relies on a selection-on-observables assumption.2 Our contribution is to use
two new identification strategies that provide well-identified evidence on how the returns to
enrolling in selective STEM programs vary with academic preparation. Our first strategy
takes advantage of data on a large number of pre-college test scores, which allows us to
estimate heterogeneity in our RD coefficients based on an applicant’s predicted likelihood
of completing a STEM degree.3 Our second strategy exploits changes in admission policies
that caused the university’s STEM quotas to double in some majors and cohorts, which
meant that the marginal admits came from lower in the application pool than usual. Thus
we provide direct evidence on the efficacy of policies that induce less-prepared students to
enroll in STEM programs or that reduce the weight on academic preparation in STEM
admissions.

Our paper is also the first to shed light on the role of counterfactual schooling choices as a
mechanism for heterogeneity in the returns to STEM enrollment. STEM programs are at the
center of a debate over “mismatch” in admission to selective universities because academic
preparation is particularly important for completing a STEM degree. Arcidiacono et al.
(2016) present evidence that minority students whose academic preparation is relatively less
than that of their classmates would be more likely to graduate with a STEM degree if they
attended less selective schools. Conversely, Bagde et al. (2016), Mountjoy et al. (2020), and
Bleemer (2022) do not find that increases in college selectivity reduce disadvantaged students’
STEM completion rates. On both sides of this debate, it is often implicitly assumed that
disadvantaged students who pursue STEM degrees at selective universities would have also
pursued STEM degrees at other schools if they had been rejected. It is unclear whether this

2 Altonji (1993), Webber (2014), and Kinsler and Pavan (2015) also present results on ability variation in
the returns to STEM degrees using selection-on-observables strategies, but the evidence is less clear. Kinsler
and Pavan (2015) find that the returns to science degrees are increasing in SAT math scores, but only for
individuals who work in jobs related to their major. Altonji (1993) finds that the returns to a college degree
in a technical major relative to other educational outcomes are larger for high-ability women than for low-
ability women, but the opposite is true for men. Webber (2014)’s estimates of the lifetime earnings premiums
of a STEM degree relative to other educational outcomes are broadly similar across ability quintiles.
3 Our RD heterogeneity strategy is similar to Abdulkadiroğlu et al. (2014)’s approach of using additional
test scores to examine heterogeneity in the impacts of attending elite high schools.
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assumption holds in practice.4 Research shows that disadvantaged students tend to apply
to fewer and less-selective colleges than other applicants (Hoxby and Avery, 2013; Pallais,
2015; Angrist et al., 2022), but these papers do not observe individuals’ interest in STEM
programs at different schools. We shed light on this by using Colombia’s national higher
education census, which allows us to observe the schools and majors that students enrolled
in when they were rejected from a selective STEM program. Thus our paper presents novel
evidence on how STEM applicants of differing preparedness vary in their counterfactual
schooling options and the role this plays in their earnings outcomes.

Our analysis focuses on selective STEM programs at a public flagship university in Cali,
Colombia called “Univalle” (Universidad del Valle). Univalle offers roughly 60 degree pro-
grams each year including STEM programs in engineering and natural sciences. Admission
to these STEM programs is highly competitive; the median STEM enrollee scored at the
96th percentile of the ICFES national college entrance exam, and over 90 percent of admit-
ted students chose to enroll. We obtained data on applicants to all Univalle programs in
1999–2004, and linked this to administrative records that provide individuals’ scores on each
ICFES exam subject. We also match our data to a national census of college enrollment
and graduation, and to administrative earnings records for the year 2017. This allows us to
observe applicants’ enrollment choices even if they were not admitted to Univalle, as well as
their graduation outcomes and formal sector earnings measured roughly 15 years later.

We begin by estimating mean graduation rates and earnings returns for students on the
margin of admission to Univalle’s STEM programs. Students apply to specific programs at
Univalle, and admission is determined solely by scores on the ICFES exam. We use a RD
design that estimates the causal effect of enrolling in Univalle for students near the admission
thresholds. Across all engineering and natural science programs, the mean graduation rate
for marginal enrollees was only 34 percent, but enrolling in these programs increased average
monthly earnings in 2017 by 14 percent. Univalle’s STEM programs are unique in having
low graduation rates and high returns. In non-STEM programs at Univalle, we find that 50
percent of marginal enrollees graduated, but the mean earnings return was close to zero.

We then use two empirical strategies to examine how the returns to STEM enrollment
vary for less- and more-prepared applicants. First, we estimate heterogeneity in the RD

4 The most compelling evidence on the relationship between selective university admissions and STEM
degree attainment comes from Bleemer (2022), who shows that a ban on affirmative action in the University
of California system reduced underrepresent minority (URM) students’ STEM degree completion rates. But
Bleemer (2022) only has data on enrollment in STEM courses for five UC campus, so it is hard to know
whether the aggregate decline in STEM completion occurred because URM students were less likely to
persist in STEM programs after affirmative action was banned, or because they were less likely to pursue
a STEM degree to begin with. Mismatch research typically focuses on the student/college fit as it relates
to persistence in STEM courses, whereas we provide evidence on relationship between selective university
admissions and enrollment in STEM programs.
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coefficients by exploiting the fact that our data contain multiple measures of pre-college aca-
demic preparation. Univalle admissions are based on a weighted average of up to nine subject
scores on the ICFES exam, and the weights chosen by the admission committees differ from
those that best predict which students would graduate. This allows us to define a measure
of an applicant’s propensity to complete a STEM degree, and to estimate RD regressions
separately for less- and more-prepared applicants as defined by graduation propensity.

Our second strategy exploits variation in the size of Univalle’s admission quotas across
cohorts. Univalle usually admitted cohorts of about 60 applicants to each STEM program,
but changes in admission policies increased these quotas to over 120 applicants in certain
programs and years. In the cohorts with large quotas, students on the margin of admission
were lower-ranked in their application pool than usual, and were thus less prepared aca-
demically for the program. We use an RD difference-in-differences design to examine how
the graduation and earnings returns for marginal admits changed in the cohorts with large
quotas. An advantage of this strategy is that the estimates reflect the effects of an actual
expansion of STEM quotas that could be implemented at other universities.

Our main finding is that less-prepared students had significantly higher earnings returns
to enrolling in Univalle’s STEM programs than more-prepared students. These higher re-
turns occurred in spite of the fact that less-prepared students were less likely to graduate
from Univalle’s STEM programs than more-prepared students. Across our two empirical
strategies, we find that less-prepared enrollees were 9–18 percentage points less likely to
complete the Univalle STEM program than more-prepared enrollees. Yet less-prepared en-
rollees experienced average large earnings gains from enrolling, with magnitudes ranging
from 30–40 percent across our two approaches. For more-prepared students, we find small
positive returns to STEM enrollment that are not statistically different from zero.

An important mechanism for the heterogeneity in earnings returns is where applicants
enrolled when they were not admitted to Univalle’s STEM programs. Using our national
higher education data, we find that, relative to more-prepared applicants, less-prepared
applicants were less likely to enroll in STEM programs at other universities when they were
rejected. As a result of these different counterfactual enrollment choices, the causal effect
of enrolling in Univalle on the likelihood of earning any STEM degree was similar for less-
and more-prepared applicants. Less-prepared applicants’ fallback programs tended to be
in lower-paying majors or at technical schools, suggesting that alternative schooling choices
partly explain the heterogeneity in returns. Using transcript data, we also find that the
gap in college GPA between less- and more-prepared graduates narrowed over the course of
the program. This suggests that the less-prepared students who managed to earn a STEM
degree may have had higher skill accumulation than more-prepared graduates, although the
evidence on this mechanism relies on stronger assumptions.
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Our findings show that policies that encourage students to enroll in STEM programs
can yield large earnings returns, even if the affected students are less prepared for STEM
coursework on average. These policies are motivated by a perceived shortage of STEM
workers (Carnevale et al., 2011; Deming and Noray, 2020) and by evidence that STEM skills
are important for growth and innovation (Peri et al., 2015; Bianchi and Giorcelli, 2020). Our
results suggest that students affected by these policies may have even larger mean returns
than existing enrollees, and that there may be welfare gains to admitting more disadvantaged
students to STEM programs (Bleemer and Mehta, 2021). An important caveat is that these
gains may be unevenly distributed given low degree attainment rates. Our estimates also do
not capture general equilibrium effects that might arise from very large increases in STEM
enrollment (Bianchi, 2020).

Further, our paper shows that STEM programs can play an important role in reducing
earnings inequality among students who arrive at college with different levels of academic
preparation. Our results are consistent with many other papers that find that academic
preparation is a strong predictor of whether students can complete a STEM program (e.g.,
Sabot and Wakeman-Linn, 1991; Ost, 2010; Arcidiacono et al., 2012). But our findings
show that focusing only on graduation rates can lead to an overly-pessimistic view about
the benefits of admitting less-prepared students to selective STEM programs. Similarly, our
paper highlights that the debate over mismatch in STEM persistence rates is only part of
the story. In choosing which students to admit to selective STEM programs, it is important
to consider that students with lower levels of academic preparation may be less likely to
pursue STEM degrees elsewhere if they are rejected.

The paper proceeds as follows. Section 1 motivates our analysis by presenting descriptive
patterns on the relationship between academic preparation, STEM degree attainment, and
earnings returns using nationwide data from Colombia. Sections 2 describes our Univalle data
and main analysis sample. Section 3 presents mean returns to Univalle STEM programs using
an RD design. Sections 4–5 present our two empirical approaches that examine heterogeneity
in these returns by academic preparation and underlying mechanisms. Section 6 concludes.

1. Motivation

1.1. Colombian administrative data and institutional background. Our analysis is
made possible by three administrative education and labor market datasets from the country
of Colombia. Our first dataset is from a national standardized exam called the ICFES, which
all Colombian students are required to take to apply to college (ICFES, 2013a).5 The ICFES
is similar to the SAT exam in the United States, but it is taken by nearly all high school
graduates in the country. It also contains more detailed subjects; over the past two decades
5 The ICFES is now named Saber 11, but we use the name that matches the period of our data.
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the ICFES has included 7–9 different subject tests. Our dataset includes subject scores and
demographic characteristics for all students who took the exam in 1998–2003.

Second, we use Ministry of Education data on enrollment and graduation at nearly all
colleges in the country (SPADIES, 2013). Colombia has a wide range of public and private
colleges with varying selectivity and degree offerings. Most of its 33 regions have a public
flagship university, which is typically the most selective college in the region and is much less
expensive to attend than comparable private universities. Colombia, like the United States,
has a decentralized system of college admissions; colleges set their own admission criteria,
and students apply separately to each institution and choose among their offers. A difference
is that Colombian students apply to institution/major pairs that we call “programs.” Our
data include all students who enrolled in college programs tracked by the Ministry from
1998–2012. We observe each student’s institution, field of study, dates of entry and exit, and
graduation outcome.

Finally, we use earnings data from the Ministry of Social Protection’s tax records (PILA,
2019). These data provide monthly earnings in 2017 for any individual who worked in the
formal sector. Our data do not include earnings from informal firms that are not registered
with the Ministry. The informal sector is a substantial portion of the Colombian labor
market, although it is less important for college-educated workers. Below we examine effects
on formal employment—defined as appearing in the Ministry’s data—and we discuss the
sensitivity of our results to missing data on informal earnings.

We link the administrative datasets using individuals’ names, birthdates, and ID numbers.
Appendix C.1 provides details on the data coverage and merge process.

1.2. Descriptive patterns. Before turning to our main analysis, Table 1 presents descrip-
tive statistics on STEM enrollment, graduation, and earnings outcomes using our national
administrative data. We categorize all bachelor’s degree programs in the Ministry of Edu-
cation data into STEM (engineering and natural sciences) and non-STEM (all other).6 We
also group programs based on whether they are offered by a public or private university. Our
main interest is in STEM programs at public universities because these are the programs for
which there is significant excess demand and thus for which quotas and admission policies
are most important. Many private colleges in Colombia are essentially open enrollment, and
even at elite private schools, admissions are much less competitive due to high tuition.

In the columns of Table 1, we group high school graduates based on a measure of academic
preparation for STEM programs. The sample for Table 1 includes all students who took the
ICFES exam in 1998–2003. To define academic preparation, we take the subsample of

6 Bachelor’s degree programs in Colombia typically have on-time durations of 4–5 years. Table 1 also
presents statistics for technical training programs, which are typically 2–3 years in duration.
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students who enrolled in a public STEM program and regress an indicator for completing
the program on the vector of ICFES subject scores. Our measure of STEM preparation
is the predicted values from this regression in the full sample. This measure averages the
ICFES subject scores based on their predictive power for STEM graduation. We group the
population of exam takers in each year into deciles based on academic preparation and show
outcomes for the top five deciles.7

We highlight three patterns in Table 1. First, STEM enrollment is heavily concentrated
among students with the highest levels of academic preparation. Panel A shows the propor-
tion of students who enrolled in each college program group. In the top decile of academic
preparation, 19 percent of students enrolled in a STEM program at a public university
(column A). In the sixth decile, only two percent of students enrolled in a public STEM
program (column E). More-prepared students were also significantly more likely to choose
private STEM programs if they did not enroll in a public STEM program. In the lower deciles
of academic preparation, the majority of students did not enroll in any college program, and
STEM enrollment was less common conditional on attending college.

Second, public STEM programs have the lowest graduation rates of all bachelor’s pro-
grams, and STEM degree completion is especially rare for less-prepared students. Panel
B shows the fraction of enrollees who earned a degree by 2012 in each program group. In
the top decile of academic preparation, 49 percent of public STEM enrollees completed the
program. In the sixth decile, only 22 percent of public STEM enrollees graduated by 2012.
Students who enrolled in other college programs were more likely to graduate within each
decile, but this gap in graduation rates is larger for less-prepared students.8

Third, the earnings premium of a public STEM degree relative to other degrees is larger
for less-prepared students. Panel C shows log monthly earnings in 2017 for students who
completed a degree in each program group. In the most-prepared decile, mean earnings
for public STEM graduates were 0.05 log points higher than those for graduates from all
other programs. The earnings gap between public STEM graduates and all other degree
holders grows wider as academic preparation decreases, reaching 0.14 log points by the sixth
decile. This pattern is driven by two factors: 1) more-prepared students have relatively
better earnings outcomes in other degree programs; and 2) more-prepared graduates are
more concentrated in the higher-paying programs within the “all other” group.

In Panel D of Table 1, we summarize all of these patterns by estimating a return to public
STEM enrollment conditional on individual characteristics. For this panel, we regress log

7 We focus on the top five deciles because few students in lower deciles attend public STEM programs.
8 The STEM graduation rates in Table 1 are comparable to those in the University of California system.
Arcidiacono et al. (2016) show that science degree completion rates at UC schools range from 40–60 percent
for students in the top quartile of academic preparation, and from 10–20 percent for bottom-quartile students.
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monthly earnings on a dummy for enrolling in a public STEM program and a large vector
of individual covariates, which includes demographic variables, ICFES subject scores, and
high school dummies. This regression measures the earnings return to enrolling in a public
STEM program relative to a weighted average of all other college options, including not
attending college at all. Thus, these estimates incorporate both the variation in program
choices (Panel A) and the variation in degree attainment rates (Panel B).

The results in Panel D suggest that less-prepared students may have larger returns to
enrolling in public STEM programs, despite their lower graduation rates. For the most-
prepared students, the earnings premium to public STEM enrollment is modest at 1.3 per-
cent. This premium is substantially larger in the other deciles, and it is 7–8 percent for the
least-prepared students. Of course, this finding should be interpreted with caution because
our covariates, while comprehensive, may not fully account for selection into STEM enroll-
ment. This caveat motivates the rest of our paper, which focuses on one public university
for which we can more credibly identify heterogeneity in the returns to STEM enrollment.

2. Univalle data and sample

2.1. Univalle. Our main analysis focuses on a public flagship university in Colombia called
Universidad del Valle, or “Univalle” for short. Univalle is located in Cali—the country’s
third largest city and the capital of the Valle del Cauca region. Like other Colombian
flagship schools, Univalle is the largest and most selective university in its region. In national
university rankings, Univalle frequently places in the top 10.

Univalle offers roughly 60 undergraduate majors each year in STEM and other fields.
Students apply to specific programs and admission is based solely on the ICFES exam. Uni-
valle’s admission scores are weighted averages of applicants’ scores on the ICFES subject
tests, with weights that vary across programs. Applicants with the highest scores are ad-
mitted up to a cutoff that is determined by the quota for each program. Below we exploit
variation in both quotas and admission score weights to explore heterogeneity in the returns
to Univalle’s STEM programs.

2.2. Sample. We collected data on admission scores and admission decisions for all appli-
cants to Univalle’s undergraduate programs from Fall 1999 to Spring 2004 (Univalle, 2017).
We linked the Univalle data to the national administrative datasets described in Section 1.1
(see Appendix C.1). This allows us to observe applicants’ college enrollment and graduation
outcomes even if they did not attend Univalle, as well as their formal earnings in the year
2017.

We focus primarily on 18 of Univalle’s bachelor’s degree programs in STEM subjects, which
we define as those in its engineering and natural science faculty areas. This includes Biology,
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Chemistry, Mathematics, Physics, Statistics, and a dozen different engineering programs. For
comparison, we also present results for 30 non-STEM programs, which include Economics
and some health programs where the classification is less clear. Our definition follows the
standard classification of STEMmajors in Canada, which has pre-professional undergraduate
health programs that are similar to those in Colombia (Statistics Canada, 2017).9

Table 2 presents summary statistics for our analysis sample, which includes all Univalle
applicants who faced the standard admission criterion. We exclude applicants in special
admission groups who were not subject to the primary admission thresholds (e.g., disabled
or indigenous applicants).10 We also exclude applicants with missing ICFES scores and those
who applied to program/cohort pairs for which all applicants were accepted. Our full sample
includes 16,022 STEM applicants (column A) and 23,439 non-STEM applicants (column D).
Roughly one-third of applicants were admitted, and nearly 90 percent of admitted students
chose to enroll (columns B and E). Columns (C) and (F) show our benchmark RD sample,
which includes applicants within 30 positions of the admission cutoff.

Univalle STEM applicants were very high achieving relative to the population of high
school graduates. The mean STEM applicant scored at the 86th percentile of the ICFES exam
(averaged across all subjects), and admitted STEM students scored at the 93rd percentile on
average. STEM applicants were also disproportionately male and from high-income families.

3. Mean returns to Univalle STEM programs

3.1. Regression discontinuity (RD) model. We begin by estimating the average return
to enrolling in Univalle’s STEM programs for applicants on the margin of admission. For
this we use a two-stage least squares (2SLS) RD model:

Eip = θDip + αxip + ψDipxip + γp + εip if |xip| ≤ h(1)

Yip = βEip + α̃xip + ψ̃Dipxip + γ̃p + ε̃ip if |xip| ≤ h.(2)

Yip is an outcome for individual i who applied to Univalle in application pool p. Application
pools are defined by a program and semester of application and, in some years, by the
applicant’s version of the ICFES exam.11 The endogenous treatment variable, Eip, is an
indicator equal to one if the applicant enrolled in the Univalle program that they applied
to. We instrument for Univalle enrollment with Dip, which is an indicator for having an

9 We exclude 2–3 year programs that terminate in technical degrees and programs that did not use ICFES
scores for admissions (e.g., Music). See Appendix C.2 for details on our sample and the included programs.
10 This follows Abdulkadiroğlu et al. (2014)’s approach in defining “sharp” RD samples, in which admission
is equivalent to having a score above the threshold.
11 The ICFES exam underwent a major reform in 2000 (Riehl, 2023), so from 2000–2002 some programs
allowed students to apply with either old or new ICFES scores. Our regressions include dummies for
program/cohort/ICFES-version triples because these variables define the relevant admission threshold.
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admission score above the threshold for that application pool. We estimate equations (1)–
(2) separately for applicants to Univalle’s STEM and non-STEM programs.

We use a local linear specification to estimate returns for applicants on the margin of
admission. Equations (1)–(2) include the running variable, xip, which is an individual’s rank
in their application pool normalized to equal zero for the last student above the threshold.
Following Pop-Eleches and Urquiola (2013) and Abdulkadiroğlu et al. (2014), we include an
interaction between xip and Dip, as well as fixed effects for each application pool, γp. Our
regression samples focus on the subset of applicants whose admission ranks are within h

positions of the admission thresholds, i.e., |xip| ≤ h. Our benchmark model uses h = 30,
which is roughly the mean of the Calonico et al. (2014) bandwidths across all dependent
variables. Appendix Tables A1–A2 show that our main results are similar using bandwidths
of 15 or 45 positions, and also if we use the Calonico et al. (2014) bandwidth for each
outcome. Some students appear in our sample multiple times because they reapplied to
Univalle, so we cluster standard errors at the individual level.

3.2. Identification assumptions and balance tests. Our identification relies on the stan-
dard RD, instrumental variable, and local average treatment effect (LATE) assumptions.

The main RD assumption is that individuals’ admission ranks are effectively randomly
assigned near the cutoffs (Lee and Lemieux, 2010). Although students likely have an idea
about the program’s quota and standards, their exact rank and admission outcome are
uncertain because of the presence of other applicants. Appendix Table A3 provides support
for this assumption from balance tests that use applicants’ observable characteristics as
outcome variables in our RD specification. We find no evidence that ICFES scores, age,
socioeconomic background, or gender change discontinuously at the admission thresholds,
and we cannot reject the hypothesis that the RD coefficients for all characteristics are jointly
zero. This table also shows balance on predicted outcomes based on these characteristics;
the point estimates for predicted outcomes are close to zero and are statistically insignificant.
Lastly, we find no evidence that the density of admission scores changes discontinuously at
the admission thresholds using the McCrary (2008) test (Appendix Figure A1).

We also make the standard instrumental variable and LATE assumptions (Angrist et al.,
1996). Instrument relevance is satisfied because the probability of Univalle enrollment in-
creases sharply at the admission thresholds, as we show below. The exclusion restriction
states that crossing the admission threshold affects individuals’ outcomes only through the
channel of Univalle enrollment. This could be violated if, for example, admission to Univalle
caused individuals to apply to other schools. We cannot rule out this possibility, but we
believe our results are primarily attributable to Univalle enrollment because the first-stage
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coefficient is large.12 The monotonicity assumption requires that there are no applicants
who would enroll in a Univalle program if and only if they were just below the admission
threshold, which is plausible in our setting.

Under these assumptions, the β coefficient from equation (2) can be interpreted as the
average causal effect of enrolling in Univalle for a population of marginally-admitted “com-
pliers,” which are students who would have enrolled if and only if they scored above the
cutoff. In regressions with log earnings as the dependent variable, β identifies the complier
average return to enrolling in a Univalle program.

3.3. Mean returns. Table 3 presents our RD estimates of the mean returns to Univalle en-
rollment. Panel A displays the first stage coefficients, θ, from equation (1). Panel B presents
2SLS coefficients, β, from equation (2) for three dependent variables: 1) an indicator for
graduating from the Univalle program by 2012; 2) an indicator for formal employment in
2017, defined as appearing in our administrative earnings records; and 3) log monthly earn-
ings in 2017 (conditional on formal employment). Columns (A)–(B) show results for STEM
applicants, and columns (C)–(D) show results for applicants to other programs. Columns
(A) and (C) display means of each dependent variable for marginally-rejected compliers,
which we estimate following Katz et al. (2001).13 Columns (B) and (D) display the RD
coefficients. We present corresponding RD graphs in Figure 1. The x-axis in each panel is
our running variable, xip, and markers represent means of the dependent variables in eight
unit bins of xip. We display separate means for STEM programs (red circles) and other
programs (hollow triangles), as well as predicted values from non-parametric regressions.

Panel A of Table 3 shows that the large majority of marginally-admitted applicants chose
to enroll in Univalle. Crossing the admission threshold increased the probability of Univalle
enrollment by 75 percentage points for STEM applicants (column B) and 78 percentage
points for other applicants (column D). These large first-stage estimates reflect the fact that
Univalle is the top choice for many students from the Valle del Cauca region.

The first row of Panel B shows that the graduation rate for marginal compliers was signif-
icantly lower in Univalle’s STEM programs than in its other programs. Only 34 percent of
marginally-admitted compliers completed the STEM program by 2012. In Univalle’s other
programs, the graduation rate for marginal compliers was more than 15 percentage points
higher, at roughly 50 percent. The low STEM graduation rate is striking because STEM

12 Our exclusion restriction is weaker than that in related work that use peer characteristics (Abdulkadiroğlu
et al., 2014) or degree completion (Kirkebøen et al., 2016) as the endogenous regressor.
13 Specifically, the “control complier means” in columns (A) and (C) are the means for treated (i.e., admitted)
compliers minus the 2SLS RD coefficients in columns (B) and (D). In Panel A, columns (A) and (C) show
the mean enrollment rate for all applicants who were 1–5 positions below the admission thresholds.
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admits tend to have higher pre-college test scores than other Univalle admits (Table 2), but
it is consistent with the national patterns in Table 1.

Yet despite lower rates of degree completion, STEM applicants had higher mean earnings
returns to attending Univalle than applicants to other programs. In the last row of Panel
B, we find that enrolling in a Univalle STEM program raised individuals’ 2017 monthly
earnings by 14 percent on average (column B). By contrast, the RD estimate of the earnings
return in other programs is slightly negative (but insignificant), and we reject equality of
the STEM and non-STEM coefficients (p = 0.02). Panel D of Figure 1 shows RD graphs for
the reduced-form earnings effects; for STEM applicants (red circles), there is a discontinuous
increase in log mean earnings at the admission thresholds.

Appendix Table A5 shows that our estimates of mean returns are robust to using different
earnings measures. Recent work highlights the fact that dependent variable transformations
such as natural logarithm can significantly alter treatment effect estimates depending on
how one treat zeroes (Chen and Roth, 2022; Mullahy and Norton, 2022). In Appendix Table
A5, we find positive and statistically significant mean returns to Univalle’s STEM programs
using earnings levels both including and excluding zeroes. Further, our benchmark estimate
of the STEM return using log earnings (14 percent) is similar in magnitude to the effects on
earnings levels as a percentage of the mean earnings for marginally-rejected compliers (which
is a specification recommended by Chen and Roth, 2022). Our earnings estimates for non-
STEM programs are slightly negative and statistically insignificant across all specifications.

Appendix Figure A2 provides evidence that our estimated earnings return for STEM ap-
plicants is unlikely to have arisen by chance. In this figure, we follow Beuermann and Jackson
(2022) in comparing the actual reduced-form RD earnings estimate for STEM applicants to a
distribution of placebo RD coefficients based on randomly-chosen cutoffs in each application
pool. The actual RD coefficient is at the 97.5th percentile of the placebo distribution.

Our STEM graduation and earnings estimates are similar in magnitude to those in related
literature. The 34 percent graduation rate for marginal STEM compliers is comparable to
persistence rates for less-prepared students at U.S. flagship schools. At UC Berkeley, for
example, Arcidiacono et al. (2016) find that only 28 percent of minority students with an
initial major in science earned a degree within five years. Using Norwegian data, Kirkebøen
et al. (2016) find that the mean earnings premium of science and engineering degrees relative
to individuals’ next-choice fields is roughly 40 percent.14 This is consistent with our mean
earnings return of 14 percent given that our estimates reflect returns to STEM enrollment
rather than degree attainment, and that only one-third of enrollees complete a degree.

14 In Kirkebøen et al. (2016), the average payoffs to science and engineering degrees are roughly 23,000 U.S.
dollars (Figure IX) and mean earnings in their sample is 56,000 U.S. dollars (Table III).
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3.4. Potential impact of informal earnings. An important caveat for our earnings re-
sults is that our data do not include informal sector jobs. In Panel B of Table 3, we do not
find significant effects of Univalle enrollment on the likelihood of formal employment (defined
as appearing in our earnings data), but the point estimates suggest a sizable positive effect in
both samples. Appendix Table A4 provides summary statistics on informal employment and
earnings using data from a Colombian household survey called the Gran Encuesta Integrada
de Hogares, or GEIH (GEIH, 2019). 20 percent of workers with a bachelor’s degree were
employed in the informal sector in 2017, and this proportion rises to 50 percent for workers
with only a high school degree. For workers with similar ages and educational attainment
as those in our sample, mean earnings in the formal sector are roughly double those in the
informal sector. Thus, our earnings estimates in Panel B may understate the return to Uni-
valle enrollment because they exclude earnings in informal jobs, which are likely to be lower
on average.

To explore the sensitivity of our results to the informal sector, Panel C of Table 3 displays
RD estimates in which we impute informal earnings under different assumptions. We first
use the 2017 GEIH surveys to compute mean informal monthly earnings for workers with a
given birth year, gender, and highest degree (high school, technical, or bachelor’s). Next, we
assume that all individuals in our sample with missing formal earnings are employed in the
informal sector, and we impute their informal earnings using the GEIH means. Lastly, we
make three different assumptions on the causal impact of Univalle enrollment on informal
earnings: 1) no impact on informal earnings (βInformal = 0); 2) the same impact on informal
earnings as on STEM formal earnings (βInformal = 0.133 in both samples); and 3) twice the
STEM formal sector impact (βInformal = 0.266). This last assumption is likely to overstate
the impact of informal earnings on our results because some individuals are out of the labor
force, and because the standard deviation of earnings is much lower in the informal sector
(Appendix Table A4).

The results in Panel C show that informal earnings are unlikely to change our finding
that Univalle’s STEM programs had higher mean returns than its other programs. Under
the assumption that STEM enrollment has no causal effect on informal earnings, our RD
estimate that includes imputed earnings (0.136) is nearly identical to the estimate on formal
sector earnings (0.133). In other programs, the estimate with imputed earnings is close to
zero (column D), as the increased access to higher-paying formal jobs offsets the negative
point estimate for formal sector earnings in Panel B. Even in our most extreme scenario—
which assumes that Univalle enrollment raises informal earnings by 0.266 log points—the
return to non-STEM programs is lower than the smallest of our STEM point estimates.
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In sum, this section showed that enrollees in Univalle’s STEM programs had high mean
earnings returns despite low graduation rates. We next ask if a similar pattern holds within
STEM programs for students with different levels of academic preparation.

4. Heterogeneity in STEM returns among marginal admits

4.1. Variation in academic preparation among marginal admits. Our goal in this
section is to examine how the earnings returns to Univalle’s STEM programs vary with
students’ academic preparation. We define academic preparation as the likelihood that a
student is able to complete the program requirements and earn a degree. This focus is
motivated by the debates over STEM admission policies, which center on the question of
whether students with relatively less academic preparation benefit from admission to selective
STEM programs (e.g., Bleemer and Mehta, 2021).

Our heterogeneity analysis exploits the fact that our data contains additional information
on an individual’s likelihood of graduating beyond their admission score. Univalle’s admission
scores are program-specific weighted averages of individuals’ scores on the ICFES exam,
which included up to nine subjects during the period of our data. As we show below,
the weights chosen by the admission committees differ from those that best predict which
students would graduate. This allows us to divide our sample into two groups with similar
admission scores, but different likelihoods of earning a degree. Our approach follows Cunha
et al. (2010) in anchoring test scores to an outcome of interest, and it mirrors Abdulkadiroğlu
et al. (2014) in using additional test scores to examine heterogeneity in RD estimates.

Table 4 illustrates this variation by showing how the ICFES scores relate to four outcomes:
1) the Univalle admission score; 2) an indicator for graduating from the Univalle program; 3)
scores on a field-specific college exit exam;15 and 4) log monthly earnings in 2017. We regress
each outcome variable on the nine ICFES subject scores using a sample of Univalle enrollees.16

We run these regressions separately for each of Univalle’s 48 programs and normalize the
estimated coefficients to sum to one. The admission score regressions recover the program-
specific weights set by the admission committees. The other regression coefficients give
the best linear predictors of graduation, exit scores, and earnings. Columns (A)–(D) show
the subject weights for each outcome averaged across Univalle’s 18 STEM programs. For
comparison, columns (E)–(H) show the mean weights in other programs.

15 We match our sample of Univalle applicants to administrative data on a national field-specific college exit
exam called Saber Pro (ICFES, 2013b). The exit exam was voluntary during the period of our data, but
most Univalle graduates took it. See MacLeod et al. (2017) for details on the Colombian exit exam.
16 Table 4 shows results for the subjects offered on the post-2000 ICFES exam. Appendix Table A6 shows
similar patterns for subjects on the pre-2000 ICFES exam, but the weights are more noisily estimated since
these applicants are a small portion of our sample.
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Table 4 shows that admission to Univalle’s STEM programs was based primarily on quan-
titative subject scores, but an admission score that maximized graduation rates would have
placed even more weight on these quantitative subjects. Column (A) shows that the typi-
cal STEM program placed 65 percent of the weight in admissions on the four quantitative
ICFES subjects (biology, chemistry, math, and physics). However, the best linear predictor
of STEM graduation places 81 percent of the weight on quantitative subjects (column B).
This is largely driven by the ICFES chemistry exam, which was highly predictive of STEM
degree completion.17 Other Univalle programs placed more weight on qualitative subjects
in admissions (column E), and yet quantitative subject scores were again relatively more
informative for degree completion (column F).

Thus conditional on the admission score, Univalle enrollees were more likely to graduate
if they scored relatively higher on quantitative subjects than on qualitative subjects. This
suggests that Univalle may have valued other outcomes beyond graduation in choosing which
students to admit.18 The admission weights are most similar to those that predict graduates’
performance on the field-specific exit exam (columns C and F in Table 4), suggesting that
Univalle prioritized students who could master the course material. While this is one im-
portant aspect of earning a degree, many other factors influence graduation rates—including
motivation, perseverance, and financial resources—and these factors may not be well mea-
sured by a test of course content (Jackson, 2018; Beuermann et al., 2023). Notably, the
weights that predict STEM graduation (column B) are most similar to those that predict
earnings (column D), which shows that the skills that affect STEM degree completion are
rewarded in the labor market.

4.2. Heterogeneity in returns. We estimate heterogeneity in returns by splitting our sam-
ple into applicants with higher and lower graduation propensities conditional on admission
scores. Specifically, we use the subject score weights from column (B) of Table 4 to define a
program-specific measure of an applicant’s propensity to graduate from Univalle. We regress
this measure of graduation propensity on individuals’ admission ranks with application pool
dummies and take the residuals from this regression. Lastly, we split our sample into two
groups based on the median value of these residuals in each application pool.19

17 The weights in Table 4 reflect the impact of a higher subject score conditional on the other subject scores,
which may partly explain why some weights are negative (Kinsler and Pavan, 2015). These weights are also
noisily estimated due to small sample sizes in each program.
18 Another possibility is that the admission committees were uncertain about the true relationship between
the subject scores and potential outcomes.
19 We use leave-cohort-out weights to define our less- and more-prepared samples to avoid a mechanical
correlation with graduation rates. Specifically, to define the two samples for program m and cohort t, we
estimate the ICFES score weights using all enrollees in program m in cohorts other than t.
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Table 5 shows RD coefficients from equations (1)–(2) estimated separately for less- and
more-prepared STEM applicants as defined by graduation propensity. Column (A) shows the
mean of each outcome for marginally-rejected STEM compliers with below-median gradua-
tion propensity, and column (B) shows the RD coefficient in this sample. Columns (C)–(D)
are similar, but the sample includes more-prepared STEM applicants, defined as those with
above-median graduation propensities. Column (E) reports the p value from an F test that
the RD coefficients for less- and more-prepared applicants are equal. Figure 2 shows RD
graphs that correspond to these regressions; this figure is similar to Figure 1, except we
include only STEM applicants and plot outcomes separately for our more-prepared (black
triangles) and less-prepared (red circles) samples.

We find that, relative to more-prepared students, less-prepared students were less likely
to complete a Univalle STEM degree if they enrolled. Our two samples had similar rates of
Univalle enrollment when they gained admission (Panel A of Table 5), but more-prepared
applicants were much more likely to complete the Univalle STEM program (first row of
Panel B). Among marginally-admitted compliers, 38 percent of students with above-median
graduation propensities completed the Univalle STEM program, as compared with 29 percent
of below-median students. (See also Panel B of Figure 2.) This shows that our measure
of graduation propensity contains information on students’ likelihood of earning a STEM
degree, as intended.

Our main finding is that, despite lower completion rates, less-prepared applicants had
significantly higher earnings returns to enrolling than more-prepared applicants. The last
row of Panel B presents 2SLS estimates of the impact of Univalle enrollment on log monthly
formal earnings. The earnings gain was 0.24 log points (28 percent) for marginal STEM
compliers with low graduation propensities (column B), while it was only 0.03 log points
(3 percent) for those with higher graduation propensities (column D). This shows that the
positive mean return to STEM enrollment in Table 3 was driven primarily by students with
relatively less academic preparation. We can reject that the less- and more-prepared returns
are equal at the 10 percent level (column E).20 Panel D of Figure 2 shows the graphical
version of this result; there is a large discontinuity in earnings at the admission thresholds
for less-prepared applicants, and no evidence of a discontinuity for more-prepared applicants.
Panel B of Appendix Figure A2 shows that the actual reduced-form RD earnings estimate

20 If the earnings effects in Table 5 were driven solely by degree attainment, they would imply a return to
a STEM degree of 0.85 log points for less-prepared applicants. Although this is a large return, it is within
the range of many of the estimated payoffs to field of study in Kirkebøen et al. (2016) (see their Figure
VIII). Appendix Figure A4 shows the full distribution of treatment effects on earnings following Abadie
(2002)’s method. Appendix Figure A5 displays RD graduation and earnings effects by academic preparation
estimated separately for each of the 18 STEM programs in our sample.
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for less-prepared applicants is larger than 98.9 percent of placebo RD coefficients based on
randomly-chosen cutoffs.

Panel C of Table 5 examines the potential impact of informal earnings on these results
using the same imputation methods as in Table 3. For less-prepared applicants, the estimated
earnings returns are not very sensitive to assumptions on informal earnings because the RD
estimate for formal employment is close to zero (second row of Panel B). For more-prepared
applicants, the impact of Univalle enrollment on the likelihood of formal employment is
larger (though not significant) at 4.4 percentage points, and so the imputation assumptions
are more consequential. The results in Panel C suggest that our estimate for formal sector
earnings may understate the true earnings impact for more-prepared applicants once we
account for informal earnings. Yet even when we assume a very large informal sector return
(βInformal = 0.266), the point estimate for more-prepared applicants (0.129) is half of the
magnitude of our main formal sector estimate for less-prepared applicants (0.244). This
suggests that informal earnings are unlikely to alter our main finding.

Our findings on heterogeneity in returns are robust to different earnings measures. In
Appendix Table A7, we find that the effects of Univalle STEM enrollment on earnings
levels—both including and excluding zeroes—are much larger for less-prepared applicants
than for more-prepared applicants. A caveat is that the estimates in levels are less precise,
and so the less- and more-prepared coefficients are not statistically distinguishable. Yet in
both specifications, the earnings level estimates are more than 20 percentage points larger for
less-prepared applicants than for more-prepared applicants as a percentage of mean earnings
for marginally-rejected compliers.

The results in Table 5 are also robust to different measures of academic preparation.
Appendix Table A9 shows that our findings are similar when we define academic preparation
using the relationship between ICFES subject scores and graduation in our national higher
education data, rather than in our Univalle sample. This table also shows results from a
specification in which we use predicted earnings to divide our sample rather than graduation
propensity; we find that students with lower predicted earnings also have higher returns to
STEM enrollment, although the heterogeneity is not statistically significant. Appendix Table
A10 shows that graduation rates for were lower for applicants who applied with post-2000
ICFES scores than those who applied with pre-2000 ICFES scores, consistent with Riehl
(2023)’s findings that the 2000 ICFES reform reduced the informativeness of the scores.
However, we continue to find lower graduation rates and higher earnings returns for less-
prepared STEM applicants within the samples that took each version of the exam. This
pattern is also unique to Univalle’s STEM programs; in non-STEM programs, we find smaller
differences in graduation rates between less- and more-prepared applicants, and we do not
find significant earnings returns in either sample (see Appendix Table A8).
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The remainder of this section considers mechanisms for why less-prepared applicants had
higher earnings returns to Univalle’s STEM programs. All else equal, students who are
more likely to complete a Univalle STEM degree would have larger returns to enrollment
if that degree improves an individual’s labor market prospects. But all else may not be
equal for less- and more-prepared applicants. Appendix B presents a simple framework
that illustrates different channels through which the returns to attending a selective STEM
program may vary with academic preparation. Below we present evidence on two of these
channels: counterfactual schooling options and heterogeneity in skill accumulation.

4.3. Counterfactual schooling options. One potential explanation for our results is that
less- and more-prepared applicants may have differed in their next-choice college programs.
Our RD estimates in Table 5 depend not only on the realized outcomes of marginal Univalle
enrollees, but also on their counterfactual outcomes if they had been rejected. Related
research argues that students whose academic preparation is relatively less than that of
their classmates would be more likely to graduate with a STEM degree if they attended
less selective schools (Arcidiacono et al., 2016). But less- and more-prepared applicants may
differ in their likelihood of enrolling in other STEM programs when they are rejected because
of differences in their preferences, financial resources, or ability to gain admission elsewhere.
Even if less-prepared students choose programs in the same field of study, they may tend
to enroll in colleges with low average earnings outcomes. For example, some less-prepared
students may have been unable to afford tuition at selective private colleges since they often
came from lower-income families.21

Our administrative data allows us to examine this mechanism because it includes en-
rollment and graduation at nearly all Colombian colleges through 2012. We define outcome
variables that reflect characteristics of the college programs that Univalle applicants attended
and the degrees they attained. Table 6 shows RD results estimated separately for less- and
more-prepared STEM applicants, defined in the same way as for Table 5. Column (A) shows
the mean of each outcome for marginally-rejected compliers in our less-prepared sample,
and column (B) shows the 2SLS RD coefficient. Columns (C)–(D) are analogous but use our
more-prepared sample. Column (E) displays the p value from an F test of equality of the
RD coefficients in columns (B) and (D).

We find that, relative to more-prepared applicants, less-prepared applicants were less
likely to enroll in other STEM bachelor’s (BA) programs if they were rejected from Uni-
valle. The first row of Panel A shows that 43 percent of marginally-rejected compliers in our
less-prepared sample enrolled in another STEM bachelor’s degree program (column A), as

21 Univalle, like most public universities in Colombia, offers tuition discounts to low SES students. Financial
aid for private colleges typically did not exist during the period of our data.
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compared with 51 percent of more-prepared applicants (column C). As a result, the causal
impact of enrolling in Univalle on the likelihood of attending any STEM bachelor’s pro-
gram was significantly larger for less-prepared applicants than for more-prepared applicants.
Univalle enrollment raised the probability of enrolling in a STEM bachelor’s program by 57
percentage points for less-prepared compliers (column B), as compared with 49 percentage
points for more-prepared compliers (column D).

The other rows in Panel A show that, relative to more-prepared applicants, less-prepared
applicants were more likely to pursue technical degrees—or forgo college altogether—if they
were rejected from Univalle. Roughly one in six marginally-rejected compliers never enrolled
in college, and this proportion was slightly higher in the less-prepared sample (19 percent)
than in the more-prepared sample (14 percent). More significantly, admission to Univalle
shifted less-prepared students from technical to bachelor’s degree programs. Univalle enroll-
ment reduced the probability of pursuing a technical degree by 13.5 percentage points among
less-prepared students (column B), and by only five percentage points for more-prepared stu-
dents (column D).

These different enrollment choices meant that the causal impact of attending Univalle on
the likelihood of completing any STEM bachelor’s degree was the same for less- and more-
prepared students. The first row of Panel B shows that enrolling in a Univalle STEM program
raised the likelihood of completing any STEM bachelor’s degree by 24.5 percentage points for
less-prepared compliers, and by 25.2 percentage points for more-prepared compliers. Thus
while less-prepared students graduated from Univalle’s STEM programs at lower rates than
more-prepared students, they also earned STEM degrees from other colleges at lower rates,
and these two effects offset. Univalle enrollment also had similar impacts on less- and more-
prepared applicants’ likelihood of completing any college degree.

To examine how these enrollment choices relate to our earnings estimates, Panel C of
Table 6 uses dependent variables that measure the average earnings of other students in
an individual’s college program. We compute the (leave out) log mean earnings in 2017
for all students in our administrative data who enrolled in an applicant’s college, major,
and college/major pair between 1998 and 2003.22 These outcomes are computed using both
drop-outs and graduates, and thus provide a measure of the expected earnings outcome for
a typical enrollee in each program.

In each case, we find that, relative to more-prepared applicants, less-prepared applicants
attended programs with lower mean earnings outcomes when they were rejected from Uni-
valle. The means for marginally-rejected students are lower in column (A) than in column
(C), and, as a result, Univalle enrollment had a larger impact on program mean earnings for
less-prepared applicants than for more-prepared applicants (columns B vs. D). For example,
22 For applicants who did not attend college, we use the leave-out mean earnings of all non-college enrollees.
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Univalle enrollment caused less-prepared applicants to attend college/major pairs in which
expected earnings for a typically enrollee was 0.19 log points higher, while this earnings
premium was only 0.13 log points more-prepared applicants.

As further evidence that counterfactual program choices contribute to our results, Appen-
dix Tables A11–A12 examine heterogeneity in returns by gender and type of STEM program.
The earnings returns to STEM enrollment are larger for men than for women, and they are
larger for Univalle’s engineering programs than for its natural science programs. In both
cases, the causal impact of Univalle enrollment on program mean earnings is larger for the
group with the larger earnings returns (men and engineering applicants). Further, the RD
estimates for individual and program-mean earnings are larger for less-prepared applicants
within each of these subsamples.

The results in Table 6 can partly explain the heterogeneity in our earnings results from
Table 5. All of the outcomes in Table 6 suggest that, relative to more-prepared applicants,
less-prepared applicants tended to have lower-paying degree programs as their next-choice
option. If the estimates in Panel C reflect the causal effects of program enrollment, then
counterfactual choices alone would lead the earnings return to Univalle enrollment to be
five percent higher for less-prepared students than for more-prepared students. This is a
strong assumption, although it is broadly consistent with the key identification assumption
in Chetty et al. (2020)’s analysis of returns to U.S. colleges. Our results run counter to the
hypothesis that less-prepared students would be more likely to earn STEM degrees if they
were rejected from selective STEM programs (Arcidiacono et al., 2016).

At the same time, alternative schooling options may not fully explain the heterogeneity
in returns. Our estimates in Table 5 suggest that the earnings return to Univalle enrollment
was 0.21 log points higher for less-prepared applicants than for more-prepared applicants.
Although these coefficients have large standard errors, the gap in earnings returns is signifi-
cantly larger than the gaps in the effects on program mean earnings in Panel C of Table 6.
Thus, other mechanisms may play a role in explaining the heterogeneity in returns.

4.4. Skill accumulation from a STEM degree. A second potential explanation for our
results is that skill accumulation from completing a STEM degree is higher for less-prepared
students than for more-prepared students. This hypothesis states that—within the sample of
students who graduated with a Univalle STEM degree—those with relatively less academic
preparation accumulated more skill over the course of the program. This could arise, for
example, if less-prepared applicants had to study more than their peers in order to earn a
degree.

To examine this possibility, we begin by plotting the earnings of Univalle STEM graduates
and drop-outs in Panel A of Figure 3. The x-axis in this panel is an individual’s graduation
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propensity, defined as in column (B) of Table 4. The y-axis is the individual’s log monthly
earnings in 2017. We plot outcomes in two samples: individuals who completed a Univalle
STEM degree and individuals who enrolled in, but dropped out of these programs. Markers
depict means in ventiles of graduation propensity, and dashed lines are predicted values from
local linear regressions.

The results in Panel A are consistent with the hypothesis that the skill accumulation from
a STEM degree is larger for students who are less likely to graduate. Among drop-outs, mean
earnings in 2017 were more than 20 percent higher for the most-prepared students than for
the least-prepared students (14.2 vs. 14.0 log points). Yet the relationship between earnings
and graduation propensity is surprisingly flat in the sample of Univalle STEM graduates.
Thus, the earnings gap between graduates and drop-outs is larger for less-prepared students.

Why do less- and more-prepared graduates have similar earnings? To shed light on this,
we take advantage of Univalle transcript data for five engineering programs in our sample.23

These data contain students’ grades in every course at Univalle. Panel B of Figure 3 plots
the mean grade point average (GPA) that graduates of these programs received in each
year in the program. To compute GPA, we include only courses that were required for the
major, and we group courses based on the year in which students typically take them. This
includes roughly 40 required courses in each program, most of which teach topics in math or
engineering. Lines depict the non-parametric relationship between GPA in each year (y-axis)
and graduation propensity (x-axis). Importantly, Panel B shows how the grade distribution
changed over time in a fixed sample since we include only students who earned a degree.

The patterns in Panel B suggest that less-prepared graduates “caught up” academically
with their more-prepared peers over the course of the program. In first-year courses (solid
line), there is a strong relationship between GPA and academic preparation, with GPA
increasing by 0.6 points across the distribution of graduation propensity.24 This relationship
is less pronounced for second-year GPA and is almost flat for GPA in years 3–5. It is
possible that this flattening reflects changes in the nature of courses or grading across years,
but Appendix Table A13 shows that the relationship between GPA and earnings is similar
in each of the five years. Thus, Panel B suggests a narrowing of the gap between less- and
more-prepared graduates in skills that are valued by the labor market.

A caveat is that the findings in Panel A of Figure 3 may be driven by differences in
unobserved ability. Students who graduate are likely be positively selected on unobservables,
and the degree of selection may be more pronounced for less-prepared students. We find a

23 Our transcript data cover 2000–2001 enrollees in Univalle’s Chemical, Electrical, Electronic, Materials,
and Mechanical Engineering programs. See de Roux and Riehl (2022) for details on this transcript data.
24 In Colombia, grades are reported on a 0–5 scale with 3 representing a passing grade. 0.6 GPA points is
approximately 60 percent of the standard deviation of STEM grades in our transcript data.
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similar pattern of results after controlling for demographic and high school characteristics
(Appendix Figure A6), but this does not rule out the possibility of unobserved selection. This
caveat also applies to other research that asks how returns to completed STEM degrees vary
with ability (Altonji, 1993; Arcidiacono, 2004; Webber, 2014; Kinsler and Pavan, 2015), which
also relies on strong identification assumptions. But a standard discrete choice model of
selection into graduation would not predict a flat relationship between graduation propensity
and earnings, as we observe in Panel A. Indeed, the strong relationship between first-year
GPA and graduation propensity in Panel B suggests that selection cannot fully account for
the flat gradient in earnings. Thus, we believe this pattern is partly driven by less-prepared
graduates learning more along the way to completing their degrees.

4.5. Other potential mechanisms. In addition to the two channels discussed above, there
are other potential explanations for the heterogeneity in STEM returns. One possibility is
that less-prepared students benefit from an informational channel if they are pooled with
more-prepared students in the labor market. Although we do not observe early-career earn-
ings, we do not think this signaling channel fully explains our results because the gap in
earnings returns between less- and more-prepared applicants increases with potential expe-
rience in our sample (Appendix Figure A7).25

Another possibility is that students may benefit from taking STEM courses or from access
to internships even if they do not graduate. Appendix Figure A8 shows that STEM appli-
cants who did not earn a college degree had similar earnings in 2017 regardless of whether
or not they were admitted to Univalle. This descriptive result is hard to square with the
hypothesis that Univalle drop-outs had a significant earnings return. Consistent with these
findings, Appendix Figure A9 shows that the treatment effects for less-prepared STEM ap-
plicants are much larger at higher earnings quantiles, which suggests that the positive returns
are driven primarily by graduates. But we cannot rule out the possibility that our findings
are partly driven by benefits of STEM enrollment for non-graduates.

Lastly, restrictions in the supply of both STEM programs and STEM jobs may cause
wages to diverge from marginal product, which may disproportionally benefit less-prepared
students. Although the Colombian higher education system features many private colleges
that offer STEM programs, these programs are often perceived to be low quality (Car-
ranza and Ferreyra, 2019). Our results on counterfactual program choices (Table 6) suggest
that there is an undersupply of high-quality STEM programs relative to applicant demand.

25 We also do not think that graduate school plays a significant role in our findings. Our Ministry of
Education data includes information on enrollment in graduate degree problems for a subset of the years
in our full dataset (2007–2011). Using our RD design, we find that enrolling in an undergraduate Univalle
STEM problem has a small positive effect on the probability of pursuing a graduate degree in these years,
but this effect does not vary significantly with academic preparation.
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Further, many STEM graduates work in Colombia’s mining and natural resource extract
industries, which are heavily regulated and feature large state-owned firms (e.g., Ecopetrol).
In Colombia, as in many Latin American countries, public firms typically pay high wages,
and these wages may be less related to worker productivity. This may partly explain the flat
relationship between earnings and academic preparation for STEM graduates in Figure 3.26

5. Heterogeneity in STEM returns from quota expansions

5.1. Variation in admission quotas. Our second approach to estimating heterogeneity
in STEM returns exploits variation in Univalle’s admission quotas across cohorts. Figure 4
shows the number of students who were admitted to each Univalle STEM program by semes-
ter of application. Univalle, like most Colombian colleges, offers cohorts that begin in either
August or January, and the number of admits per semester and program typically ranged
from 45–65 students. In six STEM programs, however, changes in admission policies caused
these quotas to roughly double in certain cohorts. Our analysis in this section examines how
the returns for marginally-admitted students changed when these six programs expanded
their quotas. Thus our estimates from this strategy are directly informative for policies that
seek to expand university STEM quotas (e.g., Holdren, 2013).

There were two reasons why these Univalle STEM programs expanded their quotas. First,
the Biology and Systems Engineering programs changed their desired cohort size in some
years.27 Figure 4 shows that the Biology program (black circles) admitted cohorts of 80–100
students each fall from 1999–2001, but in January 2002 it began admitting cohorts of roughly
50 students each semester (except for another large cohort in Fall 2002). Similarly, Systems
Engineering (gold squares) typically had cohorts of about 60 students, but in August 2001
it admitted more than 120 students.

The second source of quota variation came from changes in how Univalle conducted ad-
missions. Programs typically would use separate admission pools when they offered both
fall and spring cohorts. In certain years, however, four engineering programs “tracked” ap-
plicants into fall and spring cohorts all at once. Under tracking admissions, roughly the top
60 students in the application pool were admitted to an August cohort, while the next 60
students were admitted to a January cohort. Figure 4 shows that the Chemical, Electrical,
and Electronic Engineering programs used tracking admissions in Fall 2000, while Mechan-
ical Engineering did so in Fall 2001.28 In each case, more than 120 students were admitted

26 A caveat is that if access to public firms is an important mechanism, our results may not generalize to
developed countries that do not have large public/private sector wage gaps.
27 Univalle’s Systems Engineering program is similar to what is often called a Computer Science major.
28 de Roux and Riehl (2022) analyze the impacts of this tracking for marginal admits to the high- and
lower-ability cohorts.
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in the tracking year, with the lower half starting at Univalle in the following January. Thus,
tracking caused the number of admits to roughly double.

For each of these six programs, students who would not have gained admission to Univalle
in a typical year were offered admission to the cohorts with large quotas. The other 12
STEM programs in our sample had a relatively stable number of admits per cohort during
this time, as illustrated by the dashed grey line in Figure 4.

5.2. RD difference-in-differences specification. We use an RD difference-in-differences
(RDDD) specification that estimates how quota expansions impacted the returns to STEM
enrollment for marginal admits. This specification comes from a two-step estimation proce-
dure. The first step is similar to our 2SLS RD specification as defined by equations (1)–(2),
except we interact all covariates with dummies for application pools, p (i.e., program/cohort
pairs). Thus, this first step yields a 2SLS RD coefficient βp for each application pool p. These
βp coefficients estimate the impacts of enrolling in a Univalle STEM program for compliers
who are on the margin of admission in pool p.

The second step relates these RD coefficients to variation in admission quotas across
programs and cohorts. In this step, we notate application pools, p, by the combination of
program, m, and application cohort, t. The second-step regression uses the RD coefficients
βp = βmt as the dependent variable in a standard difference-in-differences model:

βmt = γm + γt + πLmt + υmt.(3)

This regression includes fixed effects for programs, γm, and semester of application, γt. The
variable of interest, Lmt, is an indicator for admission pools with large quotas, which we
define in two ways. First, we define Lmt to be a binary variable for program/cohorts with
unusually large quotas, as indicated by the solid markers in Figure 4. Specifically, Lmt = 1
for the large-quota cohorts of the six programs listed in Figure 4 and Lmt = 0 for all other
cohorts of these programs and for all other STEM programs. Second, we define Lmt as the
number of admitted students in each program/cohort, as indicated by the y-axis values in
Figure 4. In this case, Lmt is a positive number for all program/cohort pairs, but most of
the variation is driven by the unusually large quotas. We divide Lmt by 60 in this second
definition so that the magnitudes of our estimates reflect a typical quota expansion.29

The coefficient of interest, π, shows how the returns to STEM enrollment for marginal
compliers, βmt, changed when the quota increased. We follow Card and Krueger (1992) in
weighting observations in equation (3) by the inverse squared standard errors of the RD

29 See Appendix Table A14 for details on our two definitions of Lmt.
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coefficients.30 We cluster standard errors at the program/cohort level, which is the level of
variation in our treatment variable, Lmt. Our main outcomes of interest, Yip, are Univalle
graduation and log monthly formal earnings in 2017.

5.3. Effects of large quotas on the characteristics of marginal compliers. In the
programs and cohorts with quota expansions, marginal admits came from lower in the ap-
plication pool than usual, and thus they tended to be less-prepared as defined by admission
scores. Formally, the 2SLS RD coefficients that we use as dependent variables in equation
(3), βmt, represent the average return to enrolling in Univalle for compliers on the margin
of admission, i.e., for students who would have enrolled if and only if they scored above
the cutoff. Our RDDD strategy is explicitly designed to measure how these returns change
when the characteristics of marginal compliers change. In the programs and cohorts with
large quotas, we expect marginal compliers to be less-prepared as defined by their propensity
to complete a STEM degree, and they may also be more likely to come from demographic
groups that tend to have lower admission scores.31

To illustrate this compositional effect, Panel A of Table 7 shows how the characteristics
of compliers near the admission thresholds for Univalle’s STEM programs changed in the
cohorts with large quotas. For this panel, we compute mean complier characteristics in each
program/cohort (mt) using different individual traits, including our measure of graduation
propensity. For reference, column (A) shows the mean characteristic of marginally-rejected
compliers averaged over all programs and cohorts. In columns (B)–(D), we estimate the DD
regression (3), but the dependent variables are the program/cohort-specific mean complier
characteristics. Column (B) defines the variable of interest, Lmt, as a binary indicator for
large cohorts. Column (C) defines Lmt as the number of admitted students divided by 60.
Column (D) is similar to column (B), but we “stack” our dataset so that the π coefficients are
identified only by comparing programs with quota expansions to those without expansions.32

This follows De Chaisemartin and d’Haultfoeuille (2020)’s approach to addressing potential
concerns with staggered DD designs.

30 Appendix Table A15 shows that our results are similar if we estimate our RDDD specification in a single-
step regression using individual-level observations. We derive this single-step regression by plugging equation
(3) into our first-step 2SLS specification (equations 1–2).
31 Quota expansions may impact the returns of marginal admits through channels other than individual
heterogeneity, such as class size or peer effects. We consider these potential mechanisms in Section 5.5.
32 We combine the six “treated” STEM programs into three groups based on the cohort(s) in which their
quotas expanded: 1) Biology (Fall 1999–2002); 2) Chemical, Electrical, and Electronic Engineering (Fall
2000 only); and 3) Mechanical and Systems Engineering (Fall 2001 only). We then create three datasets
that include all 12 “control” STEM programs plus the treated programs in each group. Lastly, we stack
these three datasets and estimate the DD or RDDD specification with all covariates (except Lmt) interacted
with dummies for these three groups. The coefficients in column (D) are a regression-weighted average of
the coefficients that one would get from estimating equation (3) separately for each of the three groups.
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The results in Panel A of Table 7 show that marginal compliers had significantly lower
graduation propensity in cohorts with large quotas, as intended. The dependent variable
in the first row is our measure of an applicant’s propensity to graduate from their Univalle
program based on their ICFES subject scores, as in Section 4.1. The graduation propensity
of marginally-admitted compliers declined by six percentage points in the STEM programs
and cohorts with large quotas, and this estimate is similar across our three specifications
(columns B–D). The other rows of Panel A show that compliers near the threshold were also
more likely to be female, less likely have a college educated mother, and less likely to be
from a high-income family, although these demographic changes are mostly insignificant.

5.4. Effects of large quotas on graduation rates and earnings returns. Panel B of
Table 7 presents our main RDDD results on how the returns for marginal STEM admits
changed in the large-quota cohorts. We consider the same four outcomes as in our RD
analysis: Univalle enrollment, Univalle graduation, formal employment in 2017, and log
monthly earnings in 2017. Column (A) shows means of each outcome for marginally-rejected
compliers, and columns (B)–(D) show the π coefficients from our RDDD specification (3). As
in Panel A, we present results using both our binary and integers measures of Lmt (columns
B and C), as well as our stacked specification (column D).

Our main finding is that when the STEM quotas expanded, the marginal enrollees were less
likely to complete the STEM program, but they had larger earnings returns to enrollment.
The second row of Panel B shows that the RD estimates for Univalle graduation declined
by 15–19 percentage points in the programs and cohorts with large quotas (columns B–D).
This is consistent with the lower graduation propensity of marginally-rejected students in
these cohorts (Panel A) and it shows that our RDDD specification captures variation in
students’ academic preparation, as intended. Yet despite the decrease in completion rates,
the RD estimates for log monthly earnings are much larger in the programs and cohorts
with large quotas. The RDDD coefficients range from 0.18 to 0.39 log points (20 to 48
percent) depending on the definition of Lmt. The magnitude of these estimates should be
interpreted with caution since the coefficients have large standard errors. But there is no
evidence that the earnings returns to STEM enrollment declined in the large cohorts, and
our earnings estimate is significant at p < 0.10 using our binary treatment variable (column
B).33 We also find that STEM quota expansions led to larger returns for marginal enrollees
when we measure earnings in levels, and these estimates are statistically significant in most
specifications (see Appendix Table A16).

33 The first row of Panel B shows that quota expansions increased the likelihood that marginal admits
chose to enroll in the Univalle STEM programs, suggesting that these applicants had less desirable next-
choice options. (These estimates come from a reduced-form version of our RDDD specification.) We find no
significant effects on formal sector employment rates.

26



Figure 5 shows a graphical version of the graduation and earnings results from Table 7.
Each circle represents a program/cohort pair for the six Univalle STEM programs that had
a large quota during our sample period (see Figure 4). The y-axis value is the 2SLS RD
coefficient for graduation rates (Panel A) and log earnings (Panel B) estimated separately for
each program/cohort. The x-axis in both panels shows the quota size for the program/cohort.
We demean both variables at the program level, and show the linear relationship between
them with a dashed line. Although the program/cohort-specific RD coefficients are noisy,
there is a negative relationship between quota size and the graduation rates of marginal
compliers (Panel A), and a positive relationship between quota size and the earnings returns
of marginal compliers (Panel B).

To examine the key identification assumption of parallel trends, Figure 6 displays an event
study version of our graduation and earnings results.34 These event studies are not standard
because the large quotas both “switch on” and “switch off” for the STEM programs in our
sample (see Figure 4). Thus for this figure, we restrict the sample to the five Univalle
engineering programs that had exactly one cohort with a large quota during our sample
period, and we use the engineering programs without significant quota variation as the
control group.35 We estimate a modified version of the DD regression (3) in which the
variables of interest are dummies for years k ∈ {−2, 0, 1, 2, 3} relative to the large-quota
cohort in the five treated programs. Thus the k = 0 coefficient corresponds to the cohort
with the large quota, while the coefficients for other values of k correspond to normal-sized
cohorts before and after the large cohort.

Figure 6 shows that the large-quota cohort (k = 0) is an outlier in that is has both the
lowest graduation rates and the highest earnings returns, but the test of parallel trends is
inconclusive because the event study estimates are noisy. In Panel A, the graduation rate
for marginal compliers in the cohort with the large quota (k = 0) is roughly 12 percentage
points lower than that in both the preceding and the following cohort. Panel B shows that
the large-quota cohort also had an earnings return for marginal compliers (0.31 log points)
that was larger than that for any of the prior or following cohorts. Yet the event study
coefficients are imprecise, especially at the tails of the graph where they are identified from
only a few treated programs. Thus an important caveat for our RDDD results is that we are
underpowered to present strong evidence for or against the parallel trends assumption.

34 Our RDDD strategy relies on the RD and 2SLS assumptions discussed in Section 3.2, and also on the
assumption that graduation rates and earnings would have followed parallel trends across Univalle programs
in the absence of quota expansions. A violation of parallel trends would arise if, for example, there were
industry-specific macroeconomic shocks that are correlated with Lmt. This is less likely given the haphazard
timing of large quotas and the fact that our “control group” includes similar STEM programs.
35 We exclude the Biology program from our event study analysis because it had four large cohorts and four
normal-sized cohorts with overlapping timing (Figure 4).
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Our finding that quota expansions increased the earnings returns of marginal enrollees is
unique to Univalle’s STEM programs. Appendix Table A17 replicates the RDDD analysis
in Table 7 for non-STEM programs, which is possible because several Univalle business and
architecture programs also expanded their quotas during our data period (see Appendix
Table A14). We find that graduation rates and earnings returns do not change significantly
with non-STEM quota expansions, which is consistent with our RD heterogeneity results.

5.5. Mechanisms. The results in Table 7 show that marginal enrollees in the larger cohorts
of Univalle’s STEM programs were less likely to earn a degree than those in smaller cohorts,
but they had higher earnings returns to enrollment. This is consistent with our main result
from Section 4 on the heterogeneity in STEM returns (Table 5), which suggests that the
underlying mechanisms for this finding may be similar. In particular, since marginal admits
to the larger cohorts were less prepared on average, they may have chosen lower-paying
programs when they were rejected from Univalle, and they may have had a higher skill
accumulation from a completed STEM degree.

Appendix Table A18 provides evidence that heterogeneity in counterfactual schooling
options partly explains why earnings returns were higher for marginal students in large
cohorts. This table uses our administrative higher education data to define outcome variables
that reflect enrollment in other college programs, as in Table 6. We find that marginally-
rejected students in cohorts with large quotas were less likely to enroll in other STEM
bachelor’s programs than those in normal-sized cohorts, and they also chose college programs
with lower mean earnings (columns B–C). As a result, enrolling in a Univalle STEM program
had a larger causal effect on overall STEM enrollment and on program mean earnings for
students in larger cohorts (columns D–E). These results are similar to the findings in Table
6, suggesting that fallback programs are also an important mechanism for the impacts of
quota expansions.36

Quota expansions also raise the possibility of peer and class size mechanisms. In our
RDDD analysis, identification comes from programs that roughly doubled their admission
quotas. This reduced the academic preparation of the average enrollee in large cohorts
and, in some cases, led to larger class sizes.37 This may have affected the graduation and
earnings outcomes of Univalle enrollees through peer interactions (Sacerdote, 2001), professor
responses to classroom composition (Duflo et al., 2011), or class size effects (Angrist and

36 Since we only have Univalle transcript data for one cohort of each STEM program, we cannot use this
data to examine heterogeneity in skill accumulation (as in Section 4.4).
37 Our RDDD analysis also relies partially on variation in the time at which students enrolled. In the
four programs with tracking admissions, marginal admits in the large cohorts had to wait approximately
five months before enrolling (see Section 5.1). Thus, variation in returns between large- and small-quota
cohorts could be partly affected by timing mechanisms such as learning decay (Cooper et al., 1996) or
age-at-enrollment effects (Bedard and Dhuey, 2006).
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Lavy, 1999). Importantly, these mechanisms may impact the returns of both marginal and
average enrollees.

Appendix Table A19 provides some evidence that peer and class size effects are not a
significant driver of our results. For this, we define a sample of “top enrollees” in each
Univalle STEM program; this sample contains students whose admission ranks were high
enough such that they could have enrolled in any cohort of their program, regardless of
the quota size. We then estimate simple DD regressions in this top enrollee sample using
equation (3). We do not find significant effects on graduation rates or earnings outcomes in
this specification, suggesting that the outcomes of top enrollees did not change differentially
in the programs and cohorts with large quotas.

In sum, the similarity our results in Sections 4–5 suggests that heterogeneity in the aca-
demic preparation of marginal enrollees is the primary driver of our results in Table 7. While
we cannot conclusively rule out other mechanisms related to quota expansions, such mech-
anisms are also relevant for policies that seek to increase the size of STEM programs at
selective universities.

6. Conclusion

On many college campuses, STEM programs have a reputation for “weeding out” under-
performing students through low grades. This reputation is consistent with a large literature
that finds that academic preparation is especially important for completing a STEM degree
(e.g., Stinebrickner and Stinebrickner, 2014). The evidence in our paper is consistent with
this prior research. Using data from a flagship university in Colombia and two different em-
pirical designs, we found that less-prepared students were significantly less likely to complete
the university’s selective STEM programs than more-prepared students. Among admitted
students with the lowest levels of academic preparation, more than 70 percent dropped out
of the program.

On the other hand, our results show that raising admission standards may not necessarily
increase the number of students who obtain any STEM degree. Using data from a national
higher education census, we found that, relative to more-prepared applicants, less-prepared
applicants were less likely to enroll in another STEM program when they were rejected.
These counterfactual enrollment choices fully offset the impact of less-prepared students’
lower graduation rates from the standpoint of STEM degree attainment. In other words, the
causal impacts of admission to a selective STEM program on the likelihood of earning any
STEM degree were similar for less- and more-prepared applicants.

Our paper also shows why less-prepared students might choose to enroll in selective STEM
programs despite lower completion rates. We found that the earnings returns to STEM
enrollment measured roughly 15 years later were higher for less-prepared students than
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for their more-prepared peers. We found similar patterns in our descriptive analysis of
STEM earnings premiums by academic preparation, suggesting that our causal results may
generalize to other selective STEM programs in Colombia.

Our results suggest that policies that expand selective STEM programs can lead to large
earnings gains for the students they induce to enroll. Similarly, changes in STEM admission
standards that reduce the emphasis on pre-college academic preparation may allow students
with larger potential earnings returns to enroll.

An important caveat to these conclusions is that these benefits may be concentrated in
the population of students who manage to complete a STEM degree. Thus, the earnings
gains from policies that promote STEM enrollment may be unequally distributed as long as
graduation rates remain low. This highlights the importance of other initiatives that help
students to develop STEM skills at younger ages. For example, Goodman (2019) shows
that compulsory math coursework in high school can have large and persistent earnings
benefits for disadvantaged students. Such initiatives can increase the stock of STEM skills
that students possess prior to attending college, and therefore help to raise STEM degree
completion rates.
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Figure 1. RD effects of admission to Univalle STEM and other programs

Notes: This figure presents RD graphs of the effects of admission to Univalle programs. The x-axis in each panel is an
applicant’s position in their application pool normalized to zero at the threshold. The variable on the y-axis is listed
in the panel title. Markers depict means of the dependent variable in bins of eight positions. Lines are predicted
values from local linear regressions estimated separately above and below the threshold with a uniform kernel and
a 30-rank bandwidth. Red circles and lines show estimates for STEM applicants. Hollow triangles and lines show
estimates for applicants to other programs.
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Figure 2. Heterogeneity in returns to Univalle STEM programs by academic preparation

Notes: This figure presents RD graphs of the effects of admission to Univalle’s STEM programs. The x-axis in each
panel is an applicant’s position in their application pool normalized to zero at the threshold. The variable on the
y-axis is listed in the panel title. Markers depict means of the dependent variable in bins of ten positions. Lines
are predicted values from local linear regressions estimated separately above and below the threshold with a uniform
kernel and a 30-rank bandwidth. Red circles and lines show estimates for less-prepared applicants. Hollow triangles
and lines show estimates for more-prepared applicants. We define our less- and more-prepared samples as described
in the notes to Table 5.
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Figure 3. Academic preparation and skill accumulation for Univalle STEM graduates

Notes: Panel A plots log monthly earnings in 2017 (y-axis) by graduation propensity (x-axis) for students who
enrolled in Univalle’s STEM programs. Markers depict means in ventiles of graduation propensity, with red circles
representing students who completed the Univalle STEM program and hollow triangles representing students who
dropped out. Dashed lines are predicted values from local linear regressions.

Panel B plots grade point average (GPA) in each year of the program (y-axis) by graduation propensity (x-axis) for
students who completed a Univalle STEM degree. The sample includes graduates from the 2000 and 2001 cohorts of
five Univalle engineering programs for which we have transcript data: Chemical, Electrical, Electronic, Materials, and
Mechanical Engineering. To compute GPA, we include only courses that were required for the major, and we group
courses based on the modal year in the program in which students take them. Lines depicted the non-parametric
relationship between students’ GPA in the required courses for each year and their graduation propensity. Markers
depict GPA in each year for each graduate in our sample; we do not plot markers below 3.2 or above 4.2 to make the
graph more readable. See the text in Section 4.4 for details on the transcript data and grades at Univalle.
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Figure 4. Quota expansions in Univalle’s STEM programs

Notes: This figure shows the number of students who were admitted to Univalle’s STEM programs in each application
cohort. The x-axis denotes the semester of application, which we observe from Fall 1999 through Spring 2004. The y-
axis shows the number of admitted students in each program and semester. Markers depict the six STEM programs in
which the admission quotas changed significantly during this time period: Biology, Chemical Engineering, Electrical
Engineering, Electronic Engineering, Mechanical Engineering, and Systems Engineering. Solid markers depict cohorts
that we define as having large quotas for our binary measure of Lmt (see Section 5.2) and hollow markers depict
small-quota cohorts. The dashed grey line plots the mean number of admits in the other 12 STEM programs in our
sample. See Appendix Table A14 for details on the number of admitted students in each Univalle program.
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Figure 5. RD estimates for STEM graduation rates and earnings returns by quota size

Notes: This figure plots RD estimates for STEM graduation rates and earnings returns against the size of the
admission quota. Each circle represents a program/cohort pair for the six Univalle STEM programs that had a large
quota during our sample period (see Figure 4). In both panels, the x-axis value is the quota size for the program/cohort
(the y-axis value in Figure 4). The y-axis value is the 2SLS RD coefficient, β, from equation (2) estimated separately
for each program/cohort. The dependent variables for these RD regression are Univalle graduation (Panel A) and log
monthly earnings in 2017 (Panel B). Circle sizes are proportional to the inverse squared standard errors of the RD
coefficients. The dashed lines show the OLS relationship between the y- and x-axis variables. To make the graphs
more readable, we do not display a few RD estimates that are very large and imprecise.
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Figure 6. Event studies for graduation rates and earnings returns in the large-quota cohort
(Engineering programs only)

Notes: This figure displays event study estimates for STEM graduation rates and earnings returns in the cohorts
with large admission quotas. The sample includes the five Univalle engineering programs that had exactly one cohort
with a large quota during our sample period (see Figure 4), plus Univalle’s other engineering programs as the control
group. We estimate a modified version of the DD regression (3) in which the variables of interest are dummies for
years k ∈ {−2, 0, 1, 2, 3} relative to the large-quota cohort in the five treated programs. Thus k = 0 corresponds to
the cohort with the large quota, k < 0 are normal-sized cohorts prior to the large cohort, and k > 0 are normal-sized
cohorts after the large cohort. The dependent variables for these DD regressions are the program/cohort-specific 2SLS
RD estimates, βmt, for Univalle graduation (Panel A) and log monthly earnings in 2017 (Panel B). The graphs plot
the πk coefficients from these DD regressions (y-axis) against the years k relative to the large-quota cohort (x-axis).
Dashed vertical lines are 95 percent confidence intervals using standard errors clustered at the program/cohort level.
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Table 1. Enrollment, graduation, and earnings by college program and academic preparation

(A) (B) (C) (D) (E)

Deciles of academic preparation for STEM

Top 9th 8th 7th 6th
Group decile decile decile decile decile

Panel A. Proportion enrolled in each program type

# ICFES exam takers 290,117 290,114 290,112 290,113 290,113

Public STEM 0.19 0.08 0.05 0.03 0.02
All other (total) 0.81 0.92 0.95 0.97 0.98

Private STEM 0.16 0.12 0.09 0.07 0.06
Public non-STEM 0.29 0.25 0.21 0.18 0.15
Private non-STEM 0.05 0.06 0.06 0.06 0.05
Technical training 0.05 0.09 0.10 0.10 0.09
No college 0.27 0.40 0.49 0.57 0.62

Panel B. Graduated from program (if enrolled)

Public STEM 0.49 0.37 0.30 0.26 0.22
All other (mean) 0.57 0.45 0.40 0.35 0.33

Private STEM 0.55 0.40 0.35 0.29 0.27
Public non-STEM 0.61 0.50 0.45 0.41 0.38
Private non-STEM 0.56 0.46 0.39 0.36 0.33
Technical training 0.40 0.36 0.32 0.30 0.28

Panel C. Log monthly earnings in 2017 (if graduated)

Public STEM 14.73 14.54 14.47 14.41 14.36
All other (mean) 14.68 14.45 14.35 14.28 14.22

Private STEM 14.82 14.59 14.48 14.41 14.34
Public non-STEM 14.64 14.43 14.35 14.28 14.22
Private non-STEM 14.67 14.44 14.32 14.24 14.21
Technical training 14.44 14.33 14.27 14.22 14.17

Panel D. Return to public STEM enrollment

Public STEM 0.013 0.054 0.055 0.080 0.070
(0.005) (0.007) (0.009) (0.010) (0.012)

Notes: This table presents descriptive statistics on STEM enrollment, graduation, and earnings outcomes using our
national Colombian administrative data. The sample includes all students who took the ICFES exam in 1998–2003.
The columns group these exam takers based on a measure of academic preparation for STEM programs. For this, we
take the subsample of students who enrolled in a public STEM program, and regress an indicator for completing the
program on the vector of ICFES subject scores. Our measure of STEM preparation is the predicted values from this
regression in the full sample; we show outcomes for the top five deciles of STEM preparation in columns (A)–(E).
The rows of each panel categorize all bachelor’s degree programs in our Ministry of Education data based on field of
study area—STEM (engineering and natural sciences) and non-STEM—and university ownership—public or private.
“Technical training” includes all non-bachelor’s programs. “All other” includes also programs except public STEM.

Panel A shows the proportion of ICFES takers who enrolled in each program type, including those who do not
appear in the Ministry of Education data (“no college”). Panel B displays the proportion enrollees in each program
who graduated by 2012. Panel C displays mean log monthly earnings in 2017 for graduates from each program. For
Panel D, we regress log monthly earnings on an indicator for enrolling in a public STEM program and dummies for
gender, birth year, mother’s education, family income, ICFES cohort, and high school. We display the coefficient on
the public STEM indicator and standard errors clustered at the individual level (in parentheses).
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Table 2. Sample summary statistics

(A) (B) (C) (D) (E) (F)

STEM programs Other programs

All RD All RD
Variable applicants Admits sample applicants Admits sample

# applicants 16,022 5,660 6,699 23,439 6,767 7,664
# enrollees 4,992 4,992 3,091 6,155 6,155 3,587

Female 0.36 0.30 0.32 0.64 0.57 0.59
Age at application 18.69 18.75 18.95 18.88 19.25 19.35
College educated mother 0.36 0.44 0.37 0.34 0.37 0.35
Family income > 2x min wage 0.58 0.64 0.60 0.56 0.59 0.59
ICFES percentile 0.86 0.93 0.90 0.80 0.86 0.84

Notes: This table displays summary statistics on our sample of Univalle applicants. Column (A) includes applicants
to the 18 STEM programs in our sample (listed below). Column (B) includes the subset of applicants who were
admitted. Column (C) shows our benchmark RD sample, which includes applicants with admission scores that are
within 30 positions of the threshold. Columns (D)–(F) include analogous samples for the 30 non-STEM programs
in our sample (listed below). See Appendix C.2 for details on the programs and applicants that we include in our
sample.

STEM programs (18 in total):
• Engineering: Agricultural, Chemical, Civil, Electrical, Electronic, Industrial, Materials, Mechanical, Sani-

tary, Statistics, Systems, Topographical
• Natural sciences: Biology, Chemical Technology (day & night), Chemistry, Math, Physics

Other programs (30 in total):
• Administration: Accounting (day & night), Business (day & night), Foreign Trade
• Health: Audiology, Bacteriology, Dentistry, Medicine, Nursing, Occupational Therapy, Physical Therapy
• Humanities: History, Recreation, Social Work, Teaching (Elementary), Teaching (Foreign Lang., day &

night), Teaching (History), Teaching (Literature), Teaching (Philosophy), Teaching (Social Science)
• Integrated arts: Architecture, Communication, Dramatic Arts, Teaching (Music), Visual Arts
• Social sciences: Economics, Psychology, Sociology
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Table 3. Mean returns to enrollment in Univalle STEM and other programs

(A) (B) (C) (D)

STEM programs Other programs

Mean below RD Mean below RD
Dependent variable threshold coef threshold coef

Panel A. First stage

Enrolled in Univalle program 0.149 0.746∗∗∗ 0.106 0.784∗∗∗

(0.015) (0.013)

N 6,699 7,664

Panel B. 2SLS regressions

Graduated from Univalle program 0.000 0.344∗∗∗ 0.000 0.498∗∗∗

(0.020) (0.018)

Employed in formal sector in 2017 0.704 0.040 0.690 0.035
(0.027) (0.025)

Log monthly earnings in 2017 14.168 0.133∗∗ 14.158 −0.047
(0.061) (0.051)

N (with earnings defined) 4,845 5,441

Panel C. Log monthly earnings returns with imputed informal earnings

βInformal = 0 14.016 0.136 13.970 −0.001
βInformal = 0.133 14.016 0.171 13.970 0.036
βInformal = 0.266 14.016 0.205 13.970 0.072

N 6,699 7,664

Notes: This table displays RD coefficients from separate regressions for Univalle applicants to STEM (columns A–B)
and other (columns C–D) programs.

Columns (A) and (C) present means of each dependent variable for applicants who were just below the admission
thresholds. In Panel A, these columns show means over all applicants who were 1–5 positions below the thresholds.
In Panels B–C, these columns show control complier means estimated following Katz et al. (2001).

Columns (B) and (D) present RD coefficients using samples of applicants within 30 positions of the admission
thresholds. Panel A displays reduced-form RD coefficients, θ, from equation (1). Panel B displays 2SLS RD co-
efficients, β, from equation (2) using the dependent variable listed in the row header. Panel C displays 2SLS RD
coefficients for log monthly earnings in which we impute values for individuals with missing earnings. For this, we use
the 2017 waves of the Colombian GEIH household survey (Gran Encuesta Integrada de Hogares) to compute mean
log informal monthly earnings for workers with a given birth year, gender, and highest degree (high school, technical,
or bachelor’s). We assume that all individuals in our sample with missing formal earnings have the GEIH informal
mean earnings based on their values of these three covariates. For applicants with missing earnings who enrolled in
Univalle, we increase their earnings from the GEIH informal mean by βInformal, where this term takes three different
values: 0, 0.133, and 0.266. We estimate the 2SLS RD specification (1)–(2) using log monthly earnings including
these imputed values as the outcome and display the θ coefficients in Panel C.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 4. ICFES subject score weights in admission scores and outcomes

(A) (B) (C) (D) (E) (F) (G) (H)

STEM programs Other programs

ICFES subject Admit Grad- Exit Log Admit Grad- Exit Log
(Post-2000 exam) score uated score earnings score uated score earnings

Biology 0.11 0.03 0.13 0.01 0.09 0.09 0.13 −0.10
Chemistry 0.14 0.69 0.33 0.76 0.05 0.49 0.21 0.35
Math 0.27 −0.19 0.10 −0.16 0.21 −0.28 0.06 0.12
Physics 0.12 0.28 0.12 0.43 0.04 0.27 0.06 0.09

Geography 0.05 −0.10 0.09 −0.33 0.12 −0.18 0.11 −0.20
History 0.07 −0.21 0.03 0.05 0.13 −0.03 0.17 0.15
Interdisciplinary 0.03 0.08 −0.02 −0.06 0.03 0.09 0.04 0.08
Language arts 0.14 0.18 0.13 0.18 0.23 0.40 0.14 0.11
Philosophy 0.06 0.24 0.08 0.13 0.12 0.15 0.09 0.40

Quantitative subjects 0.65 0.81 0.68 1.04 0.39 0.57 0.46 0.46
Qualitative subjects 0.35 0.19 0.32 −0.04 0.61 0.43 0.54 0.54

Mean absolute deviation 0.21 0.06 0.26 0.20 0.06 0.14
from admit score

N (enrollees w/ outcome) 4,491 4,491 1,460 3,311 5,677 5,677 2,499 4,278

Notes: This table shows how subject scores on the ICFES exam relate to four outcomes: 1) the Univalle admission
score; 2) an indicator for graduating from the Univalle program; 3) scores on a field-specific college exit exam called
Saber Pro (formerly ECAES); and 4) log monthly earnings in 2017. We regress each outcome variable on the nine
ICFES subject scores using all Univalle enrollees in our sample who took the post-2000 version of the ICFES. (See
Appendix Table A6 for analogous results using pre-2000 ICFES exam takers.) We run these regressions separately
for each of Univalle’s 48 programs and normalize the estimated coefficients to sum to one. Columns (A)–(D) show
the subject weights for each outcome averaged across Univalle’s 18 STEM programs. Columns (E)–(H) show the
subject weights for each outcome averaged across Univalle’s 30 non-STEM programs. We report the sum of the
weights for quantitative subjects (biology, chemistry, math, and physics) and qualitative subjects (geography, history,
interdisciplinary, language arts, and philosophy). We also report the mean absolute deviation between the average
admission score weights (columns A and D) and the average weights for each other outcome (columns B–D and F–H).
The last row shows the number of Univalle enrollees for which each outcome is defined.
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Table 5. Heterogeneity in returns to Univalle STEM enrollment by academic preparation

(A) (B) (C) (D) (E)

Less-prepared More-prepared
applicants applicants

Mean below RD Mean below RD p value
Dependent variable threshold coef threshold coef diff

Panel A. First stage

Enrolled in Univalle program 0.155 0.726∗∗∗ 0.144 0.761∗∗∗ 0.253
(0.022) (0.021)

N 3,306 3,390

Panel B. 2SLS regressions

Graduated from Univalle program 0.000 0.288∗∗∗ 0.000 0.375∗∗∗ 0.031
(0.029) (0.028)

Employed in formal sector in 2017 0.710 0.019 0.703 0.044 0.664
(0.042) (0.037)

Log monthly earnings in 2017 13.992 0.244∗∗∗ 14.307 0.032 0.091
(0.094) (0.083)

N (with earnings defined) 2,338 2,500

Panel C. Log monthly earnings returns with imputed informal earnings

βInformal = 0 13.899 0.213 14.121 0.062
βInformal = 0.133 13.899 0.249 14.121 0.095
βInformal = 0.266 13.899 0.286 14.121 0.129

N 3,306 3,390

Notes: This table displays RD coefficients from separate regressions for less-prepared (columns A–B) and more-
prepared (columns C–D) applicants to Univalle’s STEM programs. We define the less- and more-prepared samples
using a leave-cohort-out version of the graduation ICFES score weights from column (B) of Table 4. Specifically,
for each program m and cohort t, we regress an indicator for Univalle graduation on the ICFES subject scores in
a sample that includes all enrollees in program m in cohorts other than t. We take the predicted values from this
regression as a measure of the graduation propensity of applicants to program m and t. Lastly, we regress graduation
propensity on individuals’ admission ranks with application pool dummies and take the residuals from this regression.
Less-prepared applicants are those with below median residuals of graduation propensity in their application pool.
More-prepared applicants are those with above median residuals.

Columns (A) and (C) present means of each dependent variable for applicants who were just below the admission
thresholds. In Panel A, these columns show means over all applicants who were 1–5 positions below the thresholds.
In Panels B–C, these columns show control complier means estimated following Katz et al. (2001).

Columns (B) and (D) present RD coefficients using samples of applicants within 30 positions of the admission
thresholds. Panel A displays reduced-form RD coefficients, θ, from equation (1). Panel B displays 2SLS RD co-
efficients, β, from equation (2) using the dependent variable listed in the row header. Panel C displays 2SLS RD
coefficients for log monthly earnings in which we impute values for individuals with missing earnings; see the notes
to Table 3 for details on this imputation method. We estimate the 2SLS RD specification (1)–(2) using log monthly
earnings including these imputed values as the outcome and display the θ coefficients in Panel C.

Column (E) displays the p value from an F test for equality of the RD coefficients in columns (B) and (D).
Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 6. Effects of Univalle STEM enrollment on college program and degree characteristics

(A) (B) (C) (D) (E)

Less-prepared More-prepared
applicants applicants

Mean below 2SLS Mean below 2SLS p value
Dependent variable threshold coef threshold coef diff

Panel A. Enrollment in college programs

Enrolled in any STEM BA program 0.428 0.572∗∗∗ 0.507 0.493∗∗∗ 0.082
(0.034) (0.031)

Enrolled in any BA program 0.692 0.308∗∗∗ 0.782 0.218∗∗∗ 0.032
(0.032) (0.028)

Enrolled in any technical program 0.275 −0.135∗∗∗ 0.173 −0.052∗ 0.077
(0.037) (0.030)

Enrolled in any college program 0.813 0.187∗∗∗ 0.861 0.139∗∗∗ 0.208
(0.029) (0.025)

Panel B. Graduation from college programs

Completed any STEM BA program 0.109 0.245∗∗∗ 0.211 0.252∗∗∗ 0.896
(0.038) (0.038)

Completed any BA program 0.236 0.191∗∗∗ 0.402 0.135∗∗∗ 0.344
(0.042) (0.041)

Completed any technical program 0.105 −0.059∗∗ 0.076 −0.030 0.351
(0.023) (0.020)

Completed any college program 0.338 0.126∗∗∗ 0.476 0.093∗∗ 0.595
(0.045) (0.041)

Panel C. Log mean earnings in college program

Mean earnings in college 14.063 0.045∗∗∗ 14.100 0.013 0.070
(0.013) (0.012)

Mean earnings in major 14.092 0.111∗∗∗ 14.119 0.062∗∗∗ 0.031
(0.017) (0.015)

Mean earnings in college/major 14.078 0.187∗∗∗ 14.136 0.133∗∗∗ 0.028
(0.018) (0.017)

N 3,306 3,390

Notes: This table displays RD coefficients from separate regressions for less-prepared (columns A–B) and more-
prepared (columns C–D) applicants to Univalle’s STEM programs. We define less- and more-prepared applicants as
described in the notes to Table 5. In Panels A–B, the outcome variables are indicators for enrolling in and graduating
from programs in our Ministry of Education data between 1998 and 2012. We define STEM programs, bachelor’s
(BA) programs and technical programs in the same way as in Table 1. In Panel C, the dependent variables are the
mean log earnings in the college, major, or college/major pair that an applicant enrolled in. We calculate this as
the leave-individual-out mean for all enrollees in the Ministry’s data. For Univalle applicants who did not enroll in
college, we use the leave-out mean log earnings for all ICFES exam takers who do not appear in the Ministry’s data.

Columns (A) and (C) show control complier means for each dependent variable estimated following Katz et al.
(2001). Columns (B) and (D) present RD coefficients using samples of applicants within 30 positions of the admission
thresholds. All coefficients are 2SLS RD coefficients, β, from equation (2) using the dependent variable listed in the
row header. Column (E) displays the p value from an F test for equality of the RD coefficients in columns (B) and
(D). Parentheses contain standard errors clustered at the individual level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 7. Effects of quota expansions on returns to Univalle STEM enrollment

(A) (B) (C) (D)

Effect of quota expansion

Control Large 60 extra Stacked
complier quota admits DD

Dependent variable mean (binary) (integer) (binary)

Panel A. Characteristics of marginally-admitted compliers (DD coefficients)

Graduation propensity 0.371 −0.062∗∗∗ −0.056∗∗∗ −0.060∗∗∗

(0.017) (0.014) (0.017)

Female 0.354 0.150 0.156 0.134
(0.105) (0.094) (0.096)

College educated mother 0.324 −0.173∗ −0.101 −0.179∗

(0.097) (0.088) (0.105)

Family income > 2x min wage 0.579 −0.086 −0.065 −0.091
(0.119) (0.104) (0.123)

N (# program/cohorts) 104 104 232

Panel B. Returns to Univalle enrollment (RDDD coefficients)

Enrolled in Univalle program 0.149 0.122∗ 0.113∗ 0.109
(0.066) (0.065) (0.067)

Graduated from Univalle program 0.000 −0.179∗∗∗ −0.148∗∗∗ −0.191∗∗∗

(0.061) (0.051) (0.069)

Employed in formal sector in 2017 0.704 0.040 0.014 0.043
(0.117) (0.093) (0.125)

Log monthly earnings in 2017 14.168 0.393∗ 0.183 0.357
(0.217) (0.201) (0.231)

N (# program/cohorts) 104 104 232

Notes: This table shows how the characteristics (Panel A) and outcomes (Panel B) of applicants near the admissions
threshold for Univalle’s STEM programs changed when the quotas increased.

In both panels, column (A) shows control complier means for each dependent variable estimated following Katz
et al. (2001). In Panel A, columns (B)–(D) show π coefficients from equation (3) in which the dependent variables
are program/cohort-specific mean complier characteristics. In Panel B, columns (B)–(D) show π coefficients from
equation (3) in which the dependent variables are program/cohort-specific RD coefficients, βmt, from our 2SLS
specification (1)–(2).

Column (B) reports estimates of π in which the variable of interest, Lmt, is an indicator for programs and cohorts
with large quotas (the solid symbols in Figure 4). Column (C) reports π coefficients in which we define Lmt as the
total number of admits in each program/cohort divided by 60 (the y-axis in Figure 4). Column (D) is similar to
column (B), but we “stack” our dataset so that the π coefficients are identified only by comparing programs with
quota expansions to those without expansions. We combine the six “treated” STEM programs into three groups
based on the cohort(s) in which their quotas expanded: 1) Biology (Fall 1999–2002); 2) Chemical, Electrical, and
Electronic Eng. (Fall 2000); and 3) Mechanical and Systems Eng. (Fall 2001). We then create three datasets that
include all 12 “control” STEM programs plus the treated programs in each group. Lastly, we stack these datasets and
estimate the DD or RDDD specification with all covariates (except Lmt) interacted with dummies for each dataset.

Regressions are at the program/cohort level with observations weighted by the inverse squared standard errors
of the means (Panel A) and RD coefficients (Panel B). Parentheses contain standard errors clustered at the pro-
gram/cohort level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Appendix — For Online Publication

Outline:
A. Appendix figures and tables
B. Theoretical appendix
C. Empirical appendix
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A. Appendix figures and tables
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Panel B. Other applicants

Figure A1. Density of admission scores relative to the threshold

Notes: This figure shows the density of admission scores relative to the admission thresholds. The x-axis is a student’s
admission score normalized to zero at the threshold. The y-axis shows the number of applicants within five unit bins
of the admission score. The graphs are limited to those with normalized scores between −100 and 100.

Panel A shows the distribution of admission scores for applicants to Univalle STEM programs. Using the McCrary
(2008) density test, the estimated discontinuity—i.e., the log difference in height at the threshold—is −0.049 with
a standard error of 0.030. Panel B shows the distribution of admission scores for applicants to non-STEM Univalle
programs. The estimated density discontinuity is 0.017 with a standard error of 0.026.
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Panel B. Less-prepared STEM applicants
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Figure A2. Placebo RD estimates for log monthly earnings — STEM applicants

Notes: This figure displays placebo RD estimates for STEM applicants’ log monthly earnings.
We follow Beuermann and Jackson (2022)’s method of generating these placebo RD estimates (see their Appendix

Figure A2). First, we randomly choose an admission rank as the placebo cutoff in each application pool. We then
estimate our reduced-form RD regression (equation 1) with log monthly earnings as the dependent variable, and we
define the placebo running variable, xip, and above-threshold indicator, Dip, relative to the placebo cutoffs.

The gray bars in each graph plot the distribution of 2,000 placebo reduced-form RD coefficients estimated using
this method. The sample for Panel A includes all STEM applicants. The samples for Panels B and C include less- and
more-prepared STEM applicants, respectively. In each graph, the vertical red lines depict the actual reduced-form
RD coefficients for log monthly earnings, and we report the percentile of these actual coefficients in the placebo
distribution. The actual reduced-form RD earnings coefficients are 0.100 for all STEM applicants, 0.181 for less-
prepared STEM applicants, and 0.024 for more-prepared STEM applicants.
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Figure A3. ICFES subject score distributions for marginal STEM applicants by academic preparation

Notes: This figure plots distributions of ICFES subject scores for marginal STEM applicants by academic preparation.
The sample includes applicants to Univalle STEM programs who were within five positions of the admission thresholds
and who took the post-2000 version of the ICFES exam. Each graph shows score distributions for a different ICFES
subject exam, as indicated in the graph title. Subject scores are normalized to be mean zero and standard deviation
one for the full sample of applicants to all Univalle programs. Solid red lines show score distributions for less-prepared
applicants, and black dashed lines show score distributions for more-prepared applicants. Each graph reports the
mean normalized score in the less- and more-prepared samples.
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Figure A4. Abadie (2002) Cumulative Distributions of Treated and Untreated Compliers

Notes: This figure presents cumulative distribution functions (CDFs) for treated and untreated compliers following
Abadie (2002). “Treated” and “untreated” are defined by admission to Univalle (above and below the admission
threshold). “Compliers” are applicants who would have enrolled in the Univalle program they applied to if and
only if they were admitted. We compute CDFs separately for treated and untreated compliers and for less- and
more-prepared applicants defined by graduation propensity (see Section 4.1), as indicated by the legend.

The sample includes applicants to STEM programs (Panels A and C) and non-STEM programs (Panels B and D)
who are within 10 positions of the admission thresholds. Panels A–B show CDFs of graduation propensity. Panels
C–D show CDFs of log monthly earnings in 2017.
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Figure A5. Earnings and graduation RD coefficients for each Univalle STEM program

Notes: This figure plots 2SLS RD estimates for graduation rates and earnings returns for each of Univalle’s 18 STEM
programs. The x-axis in each panel is the program’s graduation rate for marginal enrollees, which is β coefficient
from separate estimation of equations (1)–(2) with an indicator for graduating as the dependent variable. The y-axis
in each panel is the earnings return for marginal enrollees, which is the 2SLS RD estimate of β for each program with
log monthly earnings in 2017 as the dependent variable. Panel A shows estimates for less-prepared applicants and
Panel B shows estimates for more-prepared applicants. We define our less- and more-prepared samples as described
in the notes to Table 5. Dashed lines show the non-parametric relationships between the earnings and graduation
coefficients.
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Figure A6. Log earnings residuals for Univalle graduates and dropouts

Notes: This figure is similar to Panel A of Figure 3, but the dependent variable is earnings residuals rather than raw
earnings. We plot earnings residuals (y-axis) by graduation propensity (x-axis) for students who enrolled in Univalle’s
STEM programs. These residuals are generated from a regression of log monthly earnings in 2017 on a vector of
individual covariates (gender, age, and dummies for high schools, mother’s education categories, father’s education
categories, family income bins, and ICFES exam years). Markers depict means in ventiles of graduation propensity,
with red circles representing students who completed the Univalle STEM program and hollow triangles representing
students who dropped out. Dashed lines are predicted values from local linear regressions.
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Figure A7. Earnings returns to Univalle enrollment by years since application

Notes: This figure plots RD estimates of the earnings returns to Univalle enrollment estimated separated by years
since application. We use our 2SLS RD specification (1)–(2) with log monthly earnings in 2017 as the dependent
variable and estimate this regression separately for each application year in Fall 1999 through Spring 2004. The y-axis
in each panel represents the RD coefficients. The x-axis represents years since application, defined as 2017 minus the
year of the fall term of each academic year (e.g., 18 years since application includes applicants in Fall 1999 and Spring
2000). Panel A shows estimates for applicants to STEM programs and Panel B shows estimates for applicants to
non-STEM programs. Red circles show RD coefficients for less-prepared applicants, and hollow black triangles show
estimates for more-prepared applicants. We define our less- and more-prepared samples as described in the notes to
Table 5. Dashed vertical lines are 95 percent confidence intervals using standard errors clustered at the individual
level.
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Figure A8. STEM returns by college degree attainment

Notes: This figure plots academic preparation and earnings for STEM applicants based on whether or not they
ultimately earned a college degree. The x-axis in each panel is an applicant’s position in their application pool
normalized to zero at the threshold. The y-axis is an individual’s graduation propensity (Panel A) or log monthly
earnings in 2017 (Panel B). The sample includes all STEM applicants within 50 positions of the admission threshold.
Markers show the means of each variable in 8-rank bins of the admission score. Red circles include applicants who
earned any college degree, regardless of whether it was at Univalle. Hollow triangles include those who did not. Lines
are local linear regressions estimated separately above and below the thresholds for each sample.
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Figure A9. RD quantile regressions for log monthly earnings

Notes: This figure presents reduced form RD quantile estimates of the effects of admission to Univalle programs.
The x-axis in each panel is the quantile of log monthly earnings. The y-axis shows the estimated RD coefficient at
each quantile. We estimate these coefficients using the reduced form RD specification (1) with log earnings as the
dependent variable. Markers show the point estimates and vertical bars show 95% confidence intervals. Panel A
shows estimates for STEM applicants and Panel B show estimates for applicants to non-STEM programs. Hollow
triangles show estimates for more-prepared applicants and red circles show estimates for less-prepared applicants.
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Table A1. Robustness to RD specification — STEM applicants

(A) (B) (C) (D) (E)

Bandwidth: h = 30 h = 15 h = 45 CCT h = 30
Kernel: Uniform Uniform Uniform Uniform Triang.

Panel A. All applicants

Enrolled in Univalle program 0.746∗∗∗ 0.716∗∗∗ 0.766∗∗∗ 0.729∗∗∗ 0.730∗∗∗

(0.015) (0.021) (0.012) (0.017) (0.016)

Graduated from Univalle program 0.344∗∗∗ 0.338∗∗∗ 0.338∗∗∗ 0.335∗∗∗ 0.341∗∗∗

(0.020) (0.029) (0.017) (0.020) (0.023)

Employed in formal sector in 2017 0.040 0.046 0.039∗ 0.055∗∗ 0.051∗

(0.027) (0.040) (0.023) (0.025) (0.030)

Log monthly earnings in 2017 0.133∗∗ 0.074 0.101∗∗ 0.141∗∗ 0.119∗

(0.061) (0.088) (0.049) (0.060) (0.069)

N 6,699 3,789 8,994 5,215 6,519

Panel B. Less-prepared applicants

Enrolled in Univalle program 0.726∗∗∗ 0.697∗∗∗ 0.750∗∗∗ 0.692∗∗∗ 0.709∗∗∗

(0.022) (0.031) (0.018) (0.026) (0.024)

Graduated from Univalle program 0.288∗∗∗ 0.271∗∗∗ 0.274∗∗∗ 0.281∗∗∗ 0.281∗∗∗

(0.029) (0.042) (0.024) (0.030) (0.032)

Employed in formal sector in 2017 0.019 0.024 0.027 0.027 0.034
(0.042) (0.062) (0.035) (0.049) (0.047)

Log monthly earnings in 2017 0.244∗∗∗ 0.176 0.142∗ 0.235∗∗ 0.257∗∗

(0.094) (0.143) (0.075) (0.100) (0.105)

N 3,306 1,850 4,348 2,456 3,215

Panel C. More-prepared applicants

Enrolled in Univalle program 0.761∗∗∗ 0.743∗∗∗ 0.777∗∗∗ 0.766∗∗∗ 0.750∗∗∗

(0.021) (0.029) (0.017) (0.018) (0.023)

Graduated from Univalle program 0.375∗∗∗ 0.383∗∗∗ 0.386∗∗∗ 0.386∗∗∗ 0.377∗∗∗

(0.028) (0.040) (0.023) (0.023) (0.031)

Employed in formal sector in 2017 0.044 0.067 0.040 0.050 0.059
(0.037) (0.053) (0.031) (0.035) (0.040)

Log monthly earnings in 2017 0.032 0.017 0.057 0.034 0.013
(0.083) (0.116) (0.068) (0.072) (0.089)

N 3,390 1,937 4,642 4,177 3,301

Notes: This table displays RD coefficients for STEM applicants with different bandwidths and kernels. Panel A
shows estimates for our full sample of STEM applicants and Panels B–C show estimates separately for less- and
more-prepared applicants. The specifications are the same as in Tables 3 and 5, but we vary the bandwidth or kernel
as indicated in the column header. Column (A) replicates our benchmark results from those tables, which use an
RD bandwidth of 30 positions and a uniform kernel. Columns (B) and (C) use bandwidths of 15 and 45 positions.
Column (D) uses the RD bandwidth from the benchmark method of Calonico et al. (2014) estimated separately for
each sample and outcome variable. Column (E) uses a triangular kernel with a bandwidth of 30 positions.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A2. Robustness to RD specification — Non-STEM applicants

(A) (B) (C) (D) (E)

Bandwidth: h = 30 h = 15 h = 45 CCT h = 30
Kernel: Uniform Uniform Uniform Uniform Triang.

Panel A. All applicants

Enrolled in Univalle program 0.784∗∗∗ 0.765∗∗∗ 0.788∗∗∗ 0.785∗∗∗ 0.771∗∗∗

(0.013) (0.018) (0.011) (0.012) (0.014)

Graduated from Univalle program 0.498∗∗∗ 0.514∗∗∗ 0.499∗∗∗ 0.501∗∗∗ 0.509∗∗∗

(0.018) (0.024) (0.015) (0.014) (0.020)

Employed in formal sector in 2017 0.035 0.034 0.018 0.022 0.028
(0.025) (0.035) (0.021) (0.020) (0.027)

Log monthly earnings in 2017 −0.047 −0.009 −0.070 −0.050 −0.058
(0.051) (0.071) (0.043) (0.038) (0.056)

N 7,664 4,439 10,026 8,203 7,476

Panel B. Less-prepared applicants

Enrolled in Univalle program 0.808∗∗∗ 0.799∗∗∗ 0.811∗∗∗ 0.804∗∗∗ 0.801∗∗∗

(0.018) (0.025) (0.015) (0.017) (0.020)

Graduated from Univalle program 0.475∗∗∗ 0.495∗∗∗ 0.491∗∗∗ 0.485∗∗∗ 0.488∗∗∗

(0.025) (0.034) (0.022) (0.019) (0.027)

Employed in formal sector in 2017 0.038 0.072 0.001 0.018 0.040
(0.036) (0.049) (0.030) (0.032) (0.038)

Log monthly earnings in 2017 −0.093 −0.054 −0.094 −0.086 −0.112
(0.074) (0.108) (0.061) (0.058) (0.082)

N 3,773 2,208 4,870 4,170 3,681

Panel C. More-prepared applicants

Enrolled in Univalle program 0.765∗∗∗ 0.740∗∗∗ 0.770∗∗∗ 0.773∗∗∗ 0.746∗∗∗

(0.019) (0.027) (0.015) (0.016) (0.021)

Graduated from Univalle program 0.519∗∗∗ 0.533∗∗∗ 0.507∗∗∗ 0.516∗∗∗ 0.527∗∗∗

(0.027) (0.037) (0.023) (0.021) (0.029)

Employed in formal sector in 2017 0.032 −0.014 0.032 0.024 0.017
(0.035) (0.051) (0.030) (0.026) (0.039)

Log monthly earnings in 2017 −0.026 −0.051 −0.067 −0.063 −0.066
(0.074) (0.106) (0.062) (0.055) (0.079)

N 3,884 2,225 5,149 4,797 3,788

Notes: This table displays RD coefficients for non-STEM applicants with different bandwidths and kernels. Panel
A shows estimates for our full sample of non-STEM applicants and Panels B–C show estimates separately for less-
and more-prepared applicants. The specifications are the same as in Table 3 and Appendix Table A8, but we vary
the bandwidth or kernel as indicated in the column header. Column (A) replicates our benchmark results from those
tables, which use an RD bandwidth of 30 positions and a uniform kernel. Columns (B) and (C) use bandwidths
of 15 and 45 positions. Column (D) uses the RD bandwidth from the benchmark method of Calonico et al. (2014)
estimated separately for each sample and outcome variable. Column (E) uses a triangular kernel with a bandwidth
of 30 positions.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A3. RD balance tests

(A) (B) (C) (D) (E) (F)

STEM applicants Non-STEM applicants

Less- More- Less- More-
Dependent variable All prepared prepared All prepared prepared

Panel A. Balance tests using individual characteristics

ICFES percentile 0.002 0.004 0.003 0.003 0.001 0.004
(0.005) (0.008) (0.006) (0.007) (0.010) (0.008)

Age 0.022 0.006 0.032 −0.155 −0.180 −0.125
(0.114) (0.172) (0.146) (0.120) (0.196) (0.156)

College educated father −0.011 −0.019 −0.003 0.003 −0.053∗ 0.033
(0.024) (0.035) (0.034) (0.022) (0.032) (0.030)

College educated mother 0.021 0.004 0.046 0.003 −0.020 0.016
(0.022) (0.033) (0.032) (0.020) (0.030) (0.029)

Family income > 2x min wage 0.016 0.001 0.021 0.035 0.006 0.047
(0.023) (0.033) (0.032) (0.021) (0.031) (0.029)

Female −0.024 −0.019 −0.031 −0.004 0.008 −0.004
(0.020) (0.029) (0.029) (0.020) (0.030) (0.028)

N 6,699 3,309 3,391 7,664 3,780 3,888
p value: Jointly zero 0.693 0.980 0.622 0.566 0.606 0.707

Panel B. Balance tests using predicted outcomes

Enrolled in Univalle program 0.007 0.009 0.009 0.002 0.003 −0.001
(0.007) (0.011) (0.009) (0.006) (0.009) (0.008)

Graduated from Univalle program −0.006 −0.006 −0.005 0.002 −0.005 0.008
(0.005) (0.008) (0.007) (0.005) (0.007) (0.006)

Employed in formal sector in 2017 −0.000 −0.001 0.000 −0.001 −0.001 −0.001
(0.001) (0.002) (0.002) (0.001) (0.001) (0.001)

Log monthly earnings in 2017 −0.002 −0.005 0.002 0.003 −0.007 0.009
(0.007) (0.011) (0.009) (0.006) (0.009) (0.007)

N (w/ all characteristics defined) 5,031 2,419 2,605 5,345 2,573 2,765

Notes: This table displays RD balance tests. We estimate our reduced form RD specification (1) using the dependent
variable listed in the row header and display the θ coefficient. In Panel A, the dependent variables are individual
characteristics, and the last row reports p values from F tests that the coefficients on all characteristics are jointly
equal to zero. In Panel B, the dependent variables are predicted outcomes based on individual characteristics. To
define these predicted outcomes, we regress the outcome listed in the row header on all of the covariates from Panel
A and application pool dummies. We estimate these regressions separately for STEM and non-STEM applicants and
take the predicted values. We then use these predicted outcomes as dependent variables in the balance tests in Panel
B.

Columns (A)–(C) include applicants to STEM programs and columns (D)–(F) include non-STEM applicants.
Columns (A) and (D) include all applicants to these programs. Columns (B) and (E) include less-prepared applicants.
Columns (C) and (F) include more-prepared applicants. We define our less- and more-prepared samples as described
in the notes to Table 5.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A4. Formal and informal sector monthly earnings in 2017

(A) (B) (C) (D) (E) (F) (G)

Mean earnings SD of earnings
(1000s of COP) (1000s of COP)

Prop. in
Prop. formal Formal Informal Formal Informal

Education/industry group N employed sector sector sector sector sector

Panel A. By highest degree completed

High school degree 29,204 0.78 0.50 1,069 670 650 527
Technical degree 12,710 0.82 0.70 1,237 742 780 694
Bachelor’s degree 10,440 0.86 0.80 2,459 1,291 2,338 1,562

All high school and above 52,354 0.80 0.60 1,435 732 1,398 716

Panel B. By industry of employment

A. Agriculture and livestock 917 1.00 0.30 980 552 451 513
B. Fishing 37 1.00 0.09 790 527 545 265
C. Mining 241 1.00 0.81 3,371 663 4,160 389
D. Manufacturing 4,691 1.00 0.68 1,264 723 1,331 621
E. Electricity, gas and water utilities 408 1.00 0.96 1,506 617 1,299 147
F. Construction 1,962 1.00 0.41 1,590 844 1,784 485
G. Wholesale and retail 9,688 1.00 0.50 1,218 706 1,318 821
H. Hotels and restaurants 2,659 1.00 0.39 1,352 705 1,251 541
I. Transportation and communications 3,878 1.00 0.48 1,328 820 1,325 536
J. Financial organizations 1,059 1.00 0.88 1,909 1,236 2,030 1,911
K. Real estate and business 3,766 1.00 0.70 1,618 984 1,495 1,085
L. Public administration and defense 2,719 1.00 0.99 1,846 1,255 1,129 882
M. Education 2,326 1.00 0.88 1,601 517 1,422 438
N. Social and health services 3,588 1.00 0.87 1,344 705 931 873
O. Other community services 2,550 1.00 0.39 1,138 628 779 558
P. Domestic services 801 1.00 0.13 918 664 362 686

Notes: This table shows formal and informal sector earnings in 2017 from the GEIH Colombian household survey
(Gran Encuesta Integrada de Hogares). The sample includes all individuals surveyed between January 2017 and
December 2017 who were born between 1980–1986 and whose highest degree is high school, technical college, or
university. Panel A presents summary statistics by individuals’ highest degree. Panel B displays statistics by workers’
industry of employment, defined by the section categories in the third revision of the CIIU economic activity codes
(Clasificación Industrial Internacional Uniforme).

Column (A) shows the number of surveyed individuals. Column (B) shows the proportion employed at the time
of the survey. Column (C) shows the proportion of employed individuals who worked in the formal sector; we define
formally-employed workers as those who either: 1) have a written contract; or 2) run a business that is registered with
a government agency. This is our best approximation of the definition of formal employment that we use throughout
the paper, which is having earnings at a firm that is tracked by the Ministry of Social Protection. Column (D) shows
mean monthly earnings for formal sector workers in thousands of Colombian Pesos and column (E) shows mean
monthly earnings for informal sector workers. Columns (F)–(G) show the standard deviation of monthly earnings in
the formal and informal sectors. All statistics in columns (B)–(G) are computed using survey weights.
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Table A5. Mean returns to enrollment in Univalle STEM and other programs
using different earnings measures

(A) (B) (C) (D)

STEM programs Other programs

Mean below RD Mean below RD
Dependent variable threshold coef threshold coef

Panel A. Regressions that exclude individuals with no formal earnings

Log monthly earnings 14.168 0.133∗∗ 14.158 −0.047
(0.061) (0.051)

Monthly earnings (in 2017 USD) 633.910 80.662∗ 624.063 −33.735
(41.852) (32.008)

Monthly earnings/Mean below threshold 1.000 0.127∗ 1.000 −0.054
(0.066) (0.051)

N (with earnings defined) 4,845 5,441

Panel B. Regressions that include zeroes for individuals with no formal earnings

Monthly earnings (in 2017 USD) 447.466 80.141∗∗ 434.733 −16.769
(35.902) (27.774)

Monthly earnings/Mean below threshold 1.000 0.179∗∗ 1.000 −0.039
(0.080) (0.064)

N 6,699 7,664

Notes: This table displays RD estimates of mean returns to enrolling in Univalle’s STEM (columns A–B) and other
(columns C–D) programs using different earnings measures.

In Panel A, all regressions exclude individuals who do not appear in our formal sector earnings data. The dependent
variable in first row is log monthly earnings in 2017, which replicates our benchmark results from Table 3. In the
second row, the dependent variable is monthly earnings in levels converted to 2017 U.S. dollars. In the third row, the
dependent variable is monthly earnings in levels divided by the control complier means reported in columns (A) and
(C).

In Panel B, the dependent variables are the same as those in the second and third rows of Panel A, except we
include zeroes for individuals who do not appear in our formal sector earnings data.

Columns (A) and (C) show control complier means estimated following Katz et al. (2001). Columns (B) and (D)
display 2SLS RD coefficients, β, from equation (2) using samples of applicants within 30 positions of the admission
thresholds.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A6. Pre-2000 ICFES subject score weights in admission scores and outcomes

(A) (B) (C) (D) (E) (F) (G) (H) (I)

STEM programs Other programs

ICFES subject Admit Grad- Exit Log Admit Grad- Exit Log
(Pre-2000 exam) score uated score earnings score uated score earnings

Biology 0.13 −0.38 0.03 −0.03 0.06 −0.09 0.17 0.08
Chemistry 0.10 1.97 0.09 1.01 0.05 1.20 0.01 0.15
Math aptitude 0.22 −0.10 0.22 −0.17 0.13 −0.03 0.46 0.28
Math knowledge 0.19 0.11 0.02 0.55 0.06 −0.54 −0.55 0.11
Physics 0.12 −0.08 0.05 0.46 0.07 0.12 0.27 0.07

Language arts 0.13 −0.37 0.44 0.00 0.34 0.19 0.68 −0.09
Social science 0.11 −0.14 0.15 −0.82 0.29 0.16 −0.04 0.40

Quantitative subjects 0.76 1.51 0.41 1.82 0.38 0.65 0.36 0.69
Qualitative subjects 0.24 −0.51 0.59 −0.82 0.62 0.35 0.64 0.31

Mean absolute deviation 0.58 0.15 0.60 0.33 0.23 0.16
from admit score

N (enrollees w/ outcome) 1,007 1,007 302 742 1,042 1,042 372 743

Notes: This table shows how subject scores on the ICFES exam relate to four outcomes: 1) the Univalle admission
score; 2) an indicator for graduating from the Univalle program; 3) scores on a field-specific college exit exam called
Saber Pro (formerly ECAES); and 4) log monthly earnings in 2017. We regress each outcome variable on the
nine ICFES subject scores using all Univalle enrollees in our sample who took the pre-2000 version of the ICFES.
(See Table 4 for analogous results using post-2000 ICFES exam takers.) We run these regressions separately for
each of Univalle’s 48 programs and normalize the estimated coefficients to sum to one. Columns (A)–(D) show
the subject weights for each outcome averaged across Univalle’s 18 STEM programs. Columns (E)–(H) show the
subject weights for each outcome averaged across Univalle’s 30 non-STEM programs. We report the sum of the
weights for quantitative subjects (biology, chemistry, math, and physics) and qualitative subjects (geography, history,
interdisciplinary, language arts, and philosophy). We also report the mean absolute deviation between the average
admission score weights (columns A and D) and the average weights for each other outcome (columns B–D and F–H).
The last row shows the number of Univalle enrollees for which each outcome is defined.
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Table A7. Heterogeneity in returns to Univalle STEM enrollment by academic preparation
using different earnings measures

(A) (B) (C) (D) (E)

Less-prepared More-prepared
applicants applicants

Mean below RD Mean below RD p value
Dependent variable threshold coef threshold coef diff

Panel A. Regressions that exclude individuals with no formal earnings

Log monthly earnings 13.992 0.244∗∗∗ 14.307 0.032 0.091
(0.094) (0.083)

Monthly earnings (in 2017 USD) 510.877 133.107∗∗ 725.820 33.935 0.242
(58.519) (59.865)

Monthly earnings/Mean below threshold 1.000 0.261∗∗ 1.000 0.047 0.134
(0.115) (0.082)

N (with earnings defined) 2,338 2,500

Panel B. Regressions that include zeroes for individuals with no formal earnings

Monthly earnings (in 2017 USD) 370.107 107.233∗∗ 517.938 44.796 0.393
(49.981) (52.266)

Monthly earnings/Mean below threshold 1.000 0.290∗∗ 1.000 0.086 0.233
(0.135) (0.101)

N 3,306 3,390

Notes: This table displays RD estimates of the returns to enrolling in Univalle’s STEM programs for less-prepared
(columns A–B) and more-prepared (columns C–D) applicants using different earnings measures. We define our less-
and more-prepared samples in the same way as described in the notes to Table 5.

In Panel A, all regressions exclude individuals who do not appear in our formal sector earnings data. The dependent
variable in first row is log monthly earnings in 2017, which replicates our benchmark results from Table 5. In the
second row, the dependent variable is monthly earnings in levels converted to 2017 U.S. dollars. In the third row, the
dependent variable is monthly earnings in levels divided by the control complier means reported in columns (A) and
(C).

In Panel B, the dependent variables are the same as those in the second and third rows of Panel A, except we
include zeroes for individuals who do not appear in our formal sector earnings data.

Columns (A) and (C) show control complier means estimated following Katz et al. (2001). Columns (B) and (D)
display 2SLS RD coefficients, β, from equation (2) using samples of STEM applicants within 30 positions of the
admission thresholds. Column (E) displays the p value from an F test for equality of the RD coefficients in columns
(B) and (D).

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A8. Heterogeneity in returns to Univalle enrollment by academic preparation
Applicants to non-STEM programs

(A) (B) (C) (D) (E)

Less-prepared More-prepared
applicants applicants

Mean below 2SLS Mean below 2SLS p value
Dependent variable threshold coef threshold coef diff

Panel A. First stage

Enrolled in Univalle program 0.077 0.808∗∗∗ 0.134 0.765∗∗∗ 0.105
(0.018) (0.019)

N 3,773 3,884

Panel B. 2SLS regressions

Graduated from Univalle program −0.000 0.475∗∗∗ 0.000 0.519∗∗∗ 0.235
(0.025) (0.027)

Employed in formal sector in 2017 0.674 0.038 0.699 0.032 0.899
(0.036) (0.035)

Log monthly earnings in 2017 14.172 −0.093 14.142 −0.026 0.524
(0.074) (0.074)

N (with earnings defined) 2,654 2,771

Panel C. Log monthly earnings returns with imputed informal earnings

βInformal = 0 13.979 −0.032 13.956 0.014
βInformal = 0.133 13.979 0.006 13.956 0.050
βInformal = 0.266 13.979 0.045 13.956 0.086

N 3,773 3,884

Notes: This table displays RD coefficients from separate regressions for less-prepared (columns A–B) and more-
prepared (columns C–D) applicants to Univalle’s non-STEM programs. We define the less- and more-prepared samples
using a leave-cohort-out version of the graduation ICFES score weights from column (F) of Table 4. Specifically,
for each program m and cohort t, we regress an indicator for Univalle graduation on the ICFES subject scores in
a sample that includes all enrollees in program m in cohorts other than t. We take the predicted values from this
regression as a measure of the graduation propensity of applicants to program m and t. Lastly, we regress graduation
propensity on individuals’ admission ranks with application pool dummies and take the residuals from this regression.
Less-prepared applicants are those with below median residuals of graduation propensity in their application pool.
More-prepared applicants are those with above median residuals.

Columns (A) and (C) present means of each dependent variable for applicants who were just below the admission
thresholds. In Panel A, these columns show means over all applicants who were 1–5 positions below the thresholds.
In Panels B–C, these columns show control complier means estimated following Katz et al. (2001).

Columns (B) and (D) present RD coefficients using samples of applicants within 30 positions of the admission
thresholds. Panel A displays reduced-form RD coefficients, θ, from equation (1). Panel B displays 2SLS RD co-
efficients, β, from equation (2) using the dependent variable listed in the row header. Panel C displays 2SLS RD
coefficients for log monthly earnings in which we impute values for individuals with missing earnings; see the notes
to Table 3 for details on this imputation method. We estimate the 2SLS RD specification (1)–(2) using log monthly
earnings including these imputed values as the outcome and display the θ coefficients in Panel C.

Column (E) displays the p value from an F test for equality of the RD coefficients in columns (B) and (D).
Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A9. Heterogeneity in returns to Univalle STEM enrollment
using alternative measures of academic preparation

(A) (B) (C) (D) (E)

Less-prepared More-prepared
applicants applicants

Mean below 2SLS Mean below 2SLS p value
Dependent variable threshold coef threshold coef diff

Panel A. Graduation propensity in national administrative data

Enrolled in Univalle program 0.158 0.728∗∗∗ 0.141 0.762∗∗∗ 0.263
(0.022) (0.021)

Graduated from Univalle program −0.000 0.267∗∗∗ 0.000 0.397∗∗∗ 0.001
(0.029) (0.028)

Employed in formal sector in 2017 0.706 0.041 0.715 0.012 0.609
(0.042) (0.038)

Log monthly earnings in 2017 13.959 0.253∗∗∗ 14.356 0.004 0.044
(0.091) (0.085)

N 3,307 3,390

Panel B. Predicted log monthly earnings

Enrolled in Univalle program 0.138 0.751∗∗∗ 0.161 0.736∗∗∗ 0.602
(0.021) (0.022)

Graduated from Univalle program 0.000 0.290∗∗∗ 0.000 0.393∗∗∗ 0.012
(0.028) (0.029)

Employed in formal sector in 2017 0.714 0.004 0.701 0.051 0.410
(0.041) (0.039)

Log monthly earnings in 2017 14.009 0.188∗∗ 14.316 0.092 0.435
(0.087) (0.089)

N 3,306 3,390

Notes: This table displays RD coefficients for less- and more-prepared STEM applicants using different measures
of academic preparation. The specifications and dependent variables are the same as in Table 5, but we define our
less- and more-prepared samples using two different methods. In Panel A, we define graduation propensity using
our national Ministry of Education data rather than our sample of Univalle applicants. We regress an indicator for
graduating from any college program on the ICFES subject scores in a sample that includes all 1998–2003 ICFES
exam takers except for those who appear in our Univalle sample. We estimate this regression separately for each
program area in the Ministry’s data, and we take the predicted values from this regression as a measure of the
graduation propensity for our Univalle sample based on the area of the program the applicant applied to. We then
define our less- and more-prepared samples in the same way as in Table 5. In Panel B, we define academic preparation
based on predicted earnings rather than graduation propensity within our Univalle sample. The method is the same
as in Table 5, except we use log monthly earnings in 2017 rather than an indicator for Univalle graduation to define
the two samples.

Columns (A)–(B) show results for less-prepared applicants defined in these two ways, and columns (C)–(D) show
results for more-prepared applicants. Columns (A) and (C) present means of each dependent variable for applicants
who were just below the admission thresholds. Columns (B) and (D) present RD coefficients using samples of
applicants within 30 positions of the admission thresholds. Column (E) displays the p value from an F test for
equality of the RD coefficients in columns (B) and (D).

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A10. Heterogeneity in returns to STEM enrollment by ICFES year and academic preparation

(A) (B) (C) (D) (E) (F)

All levels of Less-prepared More-prepared
academic preparation applicants applicants

Pre- Post- Pre- Post- Pre- Post-
Dependent variable 2000 2000 2000 2000 2000 2000

Panel A. Graduation and earnings

Graduated from Univalle program 0.466∗∗∗ 0.323∗∗∗ 0.401∗∗∗ 0.259∗∗∗ 0.529∗∗∗ 0.371∗∗∗

(0.051) (0.024) (0.072) (0.035) (0.075) (0.034)

Log monthly earnings in 2017 0.095 0.111 0.335 0.194∗ −0.124 0.039
(0.168) (0.072) (0.264) (0.111) (0.210) (0.099)

Panel B. Enrollment in college programs

Enrolled in any STEM BA program 0.559∗∗∗ 0.550∗∗∗ 0.600∗∗∗ 0.603∗∗∗ 0.543∗∗∗ 0.499∗∗∗

(0.059) (0.027) (0.088) (0.041) (0.081) (0.037)

Enrolled in any BA program 0.320∗∗∗ 0.260∗∗∗ 0.393∗∗∗ 0.302∗∗∗ 0.275∗∗∗ 0.210∗∗∗

(0.053) (0.025) (0.083) (0.039) (0.069) (0.034)

Enrolled in any college program 0.236∗∗∗ 0.142∗∗∗ 0.245∗∗∗ 0.173∗∗∗ 0.246∗∗∗ 0.104∗∗∗

(0.049) (0.022) (0.075) (0.035) (0.066) (0.030)

Panel C. Log mean earnings in college program

Mean earnings in college 0.054∗∗ 0.026∗∗ 0.063∗ 0.041∗∗∗ 0.040 0.012
(0.024) (0.011) (0.036) (0.016) (0.032) (0.015)

Mean earnings in major 0.082∗∗∗ 0.095∗∗∗ 0.085∗∗ 0.131∗∗∗ 0.081∗ 0.064∗∗∗

(0.029) (0.013) (0.043) (0.020) (0.041) (0.018)

Mean earnings in college/major 0.197∗∗∗ 0.154∗∗∗ 0.232∗∗∗ 0.187∗∗∗ 0.162∗∗∗ 0.125∗∗∗

(0.034) (0.015) (0.048) (0.021) (0.051) (0.021)

N 1,062 4,912 521 2,434 541 2,477

Notes: This table displays heterogeneity in the returns to Univalle STEM enrollment by academic preparation and
applicants’ version of the ICFES exam. The sample, specifications, and dependent variables are the same as in Tables
5–6. In column (A), the sample includes applicants who took the pre-2000 version of the ICFES exam (1998–1999
cohorts). Column (B) includes applicants with post-2000 ICFES scores (2000–2003 cohorts). Columns (C)–(D)
include less-prepared applicants with pre- and post-2000 ICFES scores. Columns (E)–(F) include more-prepared
applicants with pre- and post-2000 ICFES scores. We define our less- and more-prepared samples as described in the
notes to Table 5.

All columns displays 2SLS RD coefficients β from equations (1)–(2). Panel A shows effects of Univalle STEM
enrollment on Univalle graduation and log monthly earnings in 2017, as in Panel B of Table 5. Panel B shows effects
of Univalle STEM enrollment on college program characteristics using our national higher education census data, as
in Panel A of Table 6. Panel C shows effects of Univalle STEM enrollment on log mean earnings in an applicant’s
college and/or major, as in Panel C of Table 6. Parentheses contain standard errors clustered at the individual level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A11. Heterogeneity in returns to STEM enrollment by gender and academic preparation

(A) (B) (C) (D) (E) (F)

All levels of Less-prepared More-prepared
academic preparation applicants applicants

Dependent variable Men Women Men Women Men Women

Panel A. Graduation and earnings

Graduated from Univalle program 0.306∗∗∗ 0.422∗∗∗ 0.232∗∗∗ 0.373∗∗∗ 0.348∗∗∗ 0.469∗∗∗

(0.025) (0.034) (0.037) (0.051) (0.036) (0.050)

Log monthly earnings in 2017 0.173∗∗ 0.061 0.287∗∗ 0.141 0.032 0.071
(0.081) (0.096) (0.127) (0.147) (0.105) (0.144)

Panel B. Enrollment in college programs

Enrolled in any STEM BA program 0.479∗∗∗ 0.635∗∗∗ 0.540∗∗∗ 0.625∗∗∗ 0.411∗∗∗ 0.646∗∗∗

(0.029) (0.037) (0.044) (0.055) (0.039) (0.050)

Enrolled in any BA program 0.271∗∗∗ 0.252∗∗∗ 0.304∗∗∗ 0.315∗∗∗ 0.229∗∗∗ 0.187∗∗∗

(0.027) (0.035) (0.042) (0.053) (0.035) (0.048)

Enrolled in any college program 0.168∗∗∗ 0.151∗∗∗ 0.171∗∗∗ 0.203∗∗∗ 0.151∗∗∗ 0.102∗∗

(0.024) (0.032) (0.037) (0.047) (0.032) (0.044)

Panel C. Log mean earnings in college program

Mean earnings in college 0.034∗∗∗ 0.017 0.052∗∗∗ 0.040∗ 0.019 −0.001
(0.012) (0.014) (0.017) (0.022) (0.016) (0.020)

Mean earnings in major 0.090∗∗∗ 0.074∗∗∗ 0.101∗∗∗ 0.113∗∗∗ 0.078∗∗∗ 0.031
(0.014) (0.017) (0.022) (0.026) (0.019) (0.025)

Mean earnings in college/major 0.170∗∗∗ 0.135∗∗∗ 0.198∗∗∗ 0.172∗∗∗ 0.149∗∗∗ 0.096∗∗∗

(0.016) (0.021) (0.023) (0.028) (0.022) (0.031)

N 4,558 2,132 2,225 1,066 2,329 1,045

Notes: This table displays heterogeneity in the returns to Univalle STEM enrollment by academic preparation and
gender. The sample, specifications, and dependent variables are the same as in Tables 5–6. In column (A), the sample
includes male applicants, and column (B) includes female applicants. Columns (C)–(D) include less-prepared male
and female applicants. Columns (E)–(F) include more-prepared male and female applicants. We define our less- and
more-prepared samples as described in the notes to Table 5.

All columns displays 2SLS RD coefficients β from equations (1)–(2). Panel A shows effects of Univalle STEM
enrollment on Univalle graduation and log monthly earnings in 2017, as in Panel B of Table 5. Panel B shows effects
of Univalle STEM enrollment on college program characteristics using our national higher education census data, as
in Panel A of Table 6. Panel C shows effects of Univalle STEM enrollment on log mean earnings in an applicant’s
college and/or major, as in Panel C of Table 6. Parentheses contain standard errors clustered at the individual level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A12. Heterogeneity in returns to STEM enrollment by program type and academic preparation

(A) (B) (C) (D) (E) (F)

All levels of Less-prepared More-prepared
academic preparation applicants applicants

Dependent variable Eng. N. Sci. Eng. N. Sci. Eng. N. Sci.

Panel A. Graduation and earnings

Graduated from Univalle program 0.377∗∗∗ 0.289∗∗∗ 0.308∗∗∗ 0.253∗∗∗ 0.418∗∗∗ 0.316∗∗∗

(0.026) (0.032) (0.037) (0.047) (0.036) (0.044)

Log monthly earnings in 2017 0.190∗∗ 0.035 0.249∗∗ 0.236 0.133 −0.142
(0.080) (0.094) (0.122) (0.151) (0.106) (0.131)

Panel B. Enrollment in college programs

Enrolled in any STEM BA program 0.480∗∗∗ 0.623∗∗∗ 0.538∗∗∗ 0.631∗∗∗ 0.418∗∗∗ 0.605∗∗∗

(0.029) (0.035) (0.043) (0.055) (0.041) (0.044)

Enrolled in any BA program 0.269∗∗∗ 0.269∗∗∗ 0.307∗∗∗ 0.310∗∗∗ 0.219∗∗∗ 0.222∗∗∗

(0.027) (0.033) (0.040) (0.053) (0.036) (0.042)

Enrolled in any college program 0.165∗∗∗ 0.171∗∗∗ 0.200∗∗∗ 0.162∗∗∗ 0.126∗∗∗ 0.163∗∗∗

(0.024) (0.030) (0.037) (0.046) (0.032) (0.040)

Panel C. Log mean earnings in college program

Mean earnings in college 0.025∗∗ 0.036∗∗∗ 0.044∗∗∗ 0.047∗∗ 0.007 0.021
(0.012) (0.013) (0.017) (0.020) (0.018) (0.016)

Mean earnings in major 0.135∗∗∗ 0.006 0.180∗∗∗ −0.010 0.097∗∗∗ 0.013
(0.014) (0.016) (0.021) (0.026) (0.020) (0.021)

Mean earnings in college/major 0.181∗∗∗ 0.126∗∗∗ 0.213∗∗∗ 0.142∗∗∗ 0.149∗∗∗ 0.111∗∗∗

(0.016) (0.018) (0.022) (0.028) (0.024) (0.024)

N 4,385 2,314 2,163 1,143 2,220 1,170

Notes: This table displays heterogeneity in the returns to Univalle STEM enrollment by academic preparation and
type of STEM program. The sample, specifications, and dependent variables are the same as in Tables 5–6. In
column (A), the sample includes applicants to Univalle’s Engineering programs. Column (B) includes applicants to
Univalle’s Natural Science programs. Columns (C)–(D) include less-prepared applicants to Engineering and Natural
Science programs. Columns (E)–(F) include more-prepared applicants to Engineering and Natural Science programs.
We define our less- and more-prepared samples as described in the notes to Table 5. See the notes to Table 2 for the
Univalle Engineering and Natural Science programs included in our sample.

All columns displays 2SLS RD coefficients β from equations (1)–(2). Panel A shows effects of Univalle STEM
enrollment on Univalle graduation and log monthly earnings in 2017, as in Panel B of Table 5. Panel B shows effects
of Univalle STEM enrollment on college program characteristics using our national higher education census data, as
in Panel A of Table 6. Panel C shows effects of Univalle STEM enrollment on log mean earnings in an applicant’s
college and/or major, as in Panel C of Table 6. Parentheses contain standard errors clustered at the individual level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A13. Graduation propensity, GPA, and log earnings by year in program
for Univalle STEM graduates

(A) (B) (C) (D) (E)

Panel A. Relationship between GPA and graduation propensity by year of course

Dependent variable

Year 1 Year 2 Year 3 Year 4 Year 5
Covariate GPA GPA GPA GPA GPA

Constant 3.010∗∗∗ 3.320∗∗∗ 3.418∗∗∗ 3.244∗∗∗ 3.686∗∗∗

(0.198) (0.145) (0.160) (0.198) (0.128)

Graduation propensity 1.588∗∗∗ 0.731∗∗ 0.378 0.491 0.439
(0.448) (0.337) (0.353) (0.453) (0.282)

N 152 152 152 152 152

Panel B. Relationship between log earnings and GPA by year of course

Dependent variable

Log Log Log Log Log
Covariate earnings earnings earnings earnings earnings

Year 1 GPA 0.456∗∗∗

(0.145)

Year 2 GPA 0.555∗∗∗

(0.183)

Year 3 GPA 0.451∗∗

(0.185)

Year 4 GPA 0.376∗∗∗

(0.141)

Year 5 GPA 0.474∗∗

(0.191)

N 121 121 121 121 121

Notes: This table shows the relationship between graduation propensity, Univalle GPA, and log earnings for students
who completed a Univalle STEM degree. The sample and definition of Univalle GPA is the same as in Panel B of
Figure 3. The sample includes graduates from the 2000 and 2001 cohorts of five Univalle engineering programs for
which we have transcript data: Chemical, Electrical, Electronic, Materials, and Mechanical Engineering. To compute
GPA, we include only courses that were required for the major and we group courses based on the modal year in the
program in which students take them. See the text in Section 4.4 for details on the transcript data and grades at
Univalle.

Panel A shows results from regressions of GPA in each year on graduation propensity. Panel B shows results
from regressions of log monthly earnings in 2017 on GPA in each year. All regressions include program × enrollment
cohort fixed effects. Parentheses contain standard errors clustered at the individual level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A14. Number of students admitted to Univalle programs by cohort

Number admitted by semester of application

Quota Aug Jan Aug Jan Aug Jan Aug Jan Aug Jan
variation Program 1999 2000 2000 2001 2001 2002 2002 2003 2003 2004

Panel A. STEM programs

Program Biology 101 99 82 43 92 45 53 62
expansions Systems Eng. 62 82 126 61 63

Chemical Eng. 61 130 66 43 41 39 36
Tracking Electrical Eng. 56 127 57 45 51 49 45
admissions Electronic Eng. 64 141 71 54 44 55 46

Mechanical Eng. 62 67 123 56 50 44 42

Minimal Other programs (mean) 60 45 62 44 62 50 63 47 63 46

Panel B. Non-STEM programs

Accounting (day) 25 97 194 178 96
Accounting (night) 99 101 95 93

Tracking Architecture 49 35 102 125 100 132
admissions Business (day) 51 106 196 184 100

Business (night) 48 105 103 89 90
Foreign Trade 54 92

Minimal Other programs (mean) 38 12 51 39 50 42 48 40 47 60

Notes: This table shows the number of students in our sample who were admitted to Univalle programs in each
application cohort. Columns denote the semester of application, which we observe from August (Fall) 1999 to
January (Spring) 2004. Panel A includes STEM programs, as depicted in Figure 4. Panel B includes non-STEM
programs.

The first six rows in each panel show programs in which the admission quotas changed significantly during this
time period. In STEM, this includes two programs with class size expansions (Biology and Systems Engineering) and
four programs that used “tracking” admissions (Chemical, Electrical, Electronic, and Mechanical Engineering). In all
six non-STEM programs with significant quota variation, the increase in quotas was due to tracking admissions. The
last row in each panel shows the mean number of admits for the other programs in our sample without significant
quota variation during this time period. See Section 5.1 for details on program expansions and tracking admissions.

Bold numbers are cohorts that we define as having large quotas for our binary measure of Lmt (see Section 5.2).
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Table A15. Single-step regressions for effects of quota expansions on returns to Univalle STEM
enrollment

(A) (B) (C) (D)

Effect of quota expansion

Large 60 extra Stacked
Mean below quota admits DD

Dependent variable threshold (binary) (integer) (binary)

Panel A. Characteristics of applicants at threshold (DD coefficients)

Graduation propensity 0.375 −0.092∗∗∗ −0.088∗∗∗ −0.092∗∗∗

(0.015) (0.012) (0.015)

Female 0.311 0.120∗ 0.107∗∗ 0.122∗

(0.064) (0.051) (0.066)

College educated mother 0.351 −0.181∗∗ −0.104 −0.199∗∗∗

(0.073) (0.068) (0.068)

Family income > 2x min wage 0.622 −0.098 −0.127∗∗ −0.099
(0.075) (0.053) (0.073)

N 657 657 1,479

Panel B. Returns to Univalle enrollment (RDDD coefficients)

Enrolled in Univalle program 0.149 0.153∗∗∗ 0.149∗∗ 0.146∗∗

(0.058) (0.061) (0.059)

Graduated from Univalle program −0.000 −0.125∗ −0.116∗∗ −0.132∗

(0.072) (0.057) (0.079)

Employed in formal sector in 2017 0.704 0.033 0.041 0.009
(0.110) (0.088) (0.111)

Log monthly earnings in 2017 14.168 0.401∗ 0.211 0.347∗

(0.216) (0.206) (0.205)

N 6,699 6,699 14,901

Notes: This table shows how the characteristics (Panel A) and outcomes (Panel B) of applicants near the admissions
threshold for Univalle’s STEM programs changed when the quotas increased. This table is similar to Table 7, except
we estimate the DD or RDDD coefficients in a single-step using individual-level observations.

Panel A presents results from difference-in-differences (DD) regressions using a sample of STEM applicants whose
admission scores were 1–5 positions below the thresholds. Column (A) shows the mean of each dependent variable,
and columns (B)–(D) show π coefficients from equation (3) estimated at the individual-level in this sample.

Panel B presents results from our RD difference-in-differences (RDDD) specification using all STEM applicants
whose admission scores were within 30 positions of the thresholds. Column (A) shows control complier means for each
dependent variable estimated following Katz et al. (2001). Columns (B)–(D) show π coefficients from a single-step
2SLS RDDD specification, which we derive by plugging equation (3) into our first-step 2SLS specification (1)–(2).
Our single-step 2SLS RDDD specification is:

Eip = θpDip + αpxip + ψpDipxip + γp + εip if |xip| ≤ h

Yip =
(
γ̃m + γ̃t + πLmt

)
Eip + α̃pxip + ψ̃pDipxip + γ̃p + ε̃ip if |xip| ≤ h.

Column (B) reports estimates of π in which the variable of interest, Lmt, is an indicator for programs and cohorts
with large quotas (the solid symbols in Figure 4). Column (C) reports π coefficients in which we define Lmt as the
total number of admits in each program/cohort divided by 60 (the y-axis in Figure 4). Column (D) is similar to
column (B), but we “stack” our dataset so that the π coefficients are identified only by comparing programs with
quota expansions to those without expansions. See the notes to Table 7 for details on this stacking procedure.

Regressions are at the individual level. Parentheses contain standard errors clustered at the program/cohort level.
* p < 0.10, ** p < 0.05, *** p < 0.01 72



Table A16. Effects of quota expansions on returns to Univalle STEM enrollment
using different earnings measures

(A) (B) (C) (D)

Effect of quota expansion

Control Large 60 extra Stacked
complier quota admits DD

Dependent variable mean (binary) (integer) (binary)

Panel A. Regressions that exclude individuals with no formal earnings

Log monthly earnings 14.168 0.393∗ 0.183 0.357
(0.217) (0.201) (0.231)

Monthly earnings (in 2017 USD) 633.910 381.382∗∗∗ 256.362∗ 375.565∗∗

(136.316) (133.388) (144.351)

Monthly earnings/Mean below threshold 1.000 0.602∗∗∗ 0.404∗ 0.592∗∗

(0.215) (0.210) (0.228)

N (# program/cohorts) 104 104 232

Panel B. Regressions that include zeroes for individuals with no formal earnings

Monthly earnings (in 2017 USD) 443.903 289.911∗∗ 201.357 279.311∗∗

(135.022) (125.451) (132.799)

Monthly earnings/Mean below threshold 1.000 0.653∗∗ 0.454 0.629∗∗

(0.304) (0.283) (0.299)

N (# program/cohorts) 104 104 232

Notes: This table shows RDDD estimates of how quota increases changed the returns to enrolling in Univalle’s STEM
programs under different earnings measures.

The row headers describe the earnings measures that we use as dependent variables in our first-step 2SLS RD
regressions (equations 1–2). In Panel A, all first-step regressions exclude individuals who do not appear in our formal
sector earnings data. The dependent variable in first row is log monthly earnings in 2017, which replicates our
benchmark results from Table 7. In the second row, the dependent variable is monthly earnings in levels converted
to 2017 U.S. dollars. In the third row, the dependent variable is monthly earnings in levels divided by the control
complier mean reported in column (A).

In Panel B, the dependent variables for our first-step regressions are the same as those in the second and third
rows of Panel A, except we include zeroes for individuals who do not appear in our formal sector earnings data.

Column (A) shows control complier means for each dependent variable estimated following Katz et al. (2001).
Columns (B)–(D) show π coefficients from equation (3) in which the dependent variables are program/cohort-specific
RD coefficients, βmt, from our 2SLS specification (1)–(2). Column (B) reports estimates of π in which the variable
of interest, Lmt, is an indicator for programs and cohorts with large quotas (the solid symbols in Figure 4). Column
(C) reports π coefficients in which we define Lmt as the total number of admits in each program/cohort divided by 60
(the y-axis in Figure 4). Column (D) is similar to column (B), but we “stack” our dataset so that the π coefficients
are identified only by comparing programs with quota expansions to those without expansions. See the notes to Table
7 for details on this stacking procedure.

Regressions are at the program/cohort level with observations weighted by the inverse squared standard errors of
the RD coefficients. Parentheses contain standard errors clustered at the program/cohort level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A17. Effects of quota expansions on returns to non-STEM enrollment

(A) (B) (C) (D)

Effect of quota expansion

Control Large 60 extra Stacked
complier quota admits DD

Dependent variable mean (binary) (integer) (binary)

Panel A. Characteristics of marginally-admitted compliers (DD coefficients)

Graduation propensity 0.505 −0.106∗∗ −0.038 −0.106∗∗

(0.051) (0.026) (0.051)

Female 0.592 −0.233 −0.063 −0.230
(0.198) (0.073) (0.200)

College educated mother 0.346 −0.188∗ −0.023 −0.193∗

(0.110) (0.057) (0.114)

Family income > 2x min wage 0.554 0.008 0.080 0.002
(0.130) (0.067) (0.129)

N (# program/cohorts) 130 130 239

Panel B. Returns to Univalle enrollment (RDDD coefficients)

Enrolled in Univalle program 0.106 −0.049 −0.030 −0.046
(0.146) (0.056) (0.144)

Graduated from Univalle program −0.000 −0.128 −0.072 −0.130
(0.125) (0.080) (0.126)

Employed in formal sector in 2017 0.690 −0.074 0.012 −0.085
(0.200) (0.101) (0.208)

Log monthly earnings in 2017 14.158 −0.375 −0.054 −0.398
(0.325) (0.283) (0.319)

N (# program/cohorts) 130 130 239

Notes: This table shows how the characteristics (Panel A) and outcomes (Panel B) of applicants near the admissions
threshold for Univalle’s non-STEM programs changed when the quotas increased. This table is similar to Table 7,
except the sample includes non-STEM applicants.

In both panels, column (A) shows control complier means for each dependent variable estimated following Katz
et al. (2001). In Panel A, columns (B)–(D) show π coefficients from equation (3) in which the dependent variables
are program/cohort-specific mean complier characteristics. In Panel B, columns (B)–(D) show π coefficients from
equation (3) in which the dependent variables are program/cohort-specific RD coefficients, βmt, from our 2SLS
specification (1)–(2).

Column (B) reports estimates of π in which the variable of interest, Lmt, is an indicator for programs and cohorts
with large quotas (the bold numbers in Appendix Table A14). Column (C) reports π coefficients in which we define
Lmt as the total number of admits in each program/cohort divided by 60 (the number values in Appendix Table
A14). Column (D) is similar to column (B), but we “stack” our dataset so that the π coefficients are identified only by
comparing programs with quota expansions to those without expansions. We combine the six “treated” non-STEM
programs into two groups based on the cohort(s) in which their quotas expanded: 1) Accounting, Architecture, and
Business (Fall 2000–2003); and 2) Foreign Trade (Fall 2003). We then create two datasets that include all 24 “control”
non-STEM programs plus the treated programs in each group. Lastly, we stack these datasets and estimate the DD
or RDDD specification with all covariates (except Lmt) interacted with dummies for each dataset.

Regressions are at the program/cohort level with observations weighted by the inverse squared standard errors
of the means (Panel A) and RD coefficients (Panel B). Parentheses contain standard errors clustered at the pro-
gram/cohort level.

* p < 0.10, ** p < 0.05, *** p < 0.01
74



Table A18. Effects of STEM quota expansions on college program and degree characteristics

(A) (B) (C) (D) (E)

Effect on mean Effect on returns
below threshold to STEM enrollment
(DD coefficients) (RDDD coefficients)

Large 60 extra Large 60 extra
Mean below quota admits quota admits

Dependent variable threshold (binary) (integer) (binary) (integer)

Panel A. Enrollment in college programs

Enrolled in any STEM BA program 0.564 −0.177∗∗ −0.150∗∗ 0.241∗∗∗ 0.248∗∗∗

(0.079) (0.073) (0.070) (0.068)

Enrolled in any BA program 0.766 −0.161∗∗ −0.143∗∗ 0.175∗ 0.174∗∗

(0.068) (0.058) (0.091) (0.067)

Enrolled in any technical program 0.202 0.051 0.029 0.041 0.090
(0.067) (0.055) (0.098) (0.076)

Enrolled in any college program 0.838 −0.066 −0.069 0.092 0.123∗∗

(0.069) (0.059) (0.082) (0.054)

N (# program/cohorts) 104 104 104 104

Panel B. Log mean earnings in college program

Mean earnings in college 14.081 −0.067∗∗ −0.048∗ 0.045 0.040
(0.029) (0.028) (0.038) (0.032)

Mean earnings in major 14.122 −0.023 −0.024 0.010 0.038
(0.045) (0.039) (0.050) (0.040)

Mean earnings in college/major 14.131 −0.099∗∗ −0.084∗∗ 0.053 0.053
(0.049) (0.039) (0.046) (0.044)

N (# program/cohorts) 104 104 104 104

Notes: This table shows how the college enrollment outcomes of applicants near the admissions threshold for Univalle’s
STEM programs changed when the quotas increased. Panel A shows effects on college program characteristics using
our national higher education census data, as in Panel A of Table 6. Panel B shows effects on log mean earnings in
an applicant’s college and/or major, as in Panel C of Table 6.

Column (A) shows the mean of each dependent variable for STEM applicants 1–5 positions below the thresholds.
Columns (B)–(E) show π coefficients from equation (3). In columns (B)–(C), the dependent variables are the mean
outcomes of STEM applicants whose admission scores were 1–5 positions below the thresholds in each program/cohort
(as in Panel A of Table 7). In columns (D)–(E), the dependent variables are program/cohort-specific RD coefficients,
βmt, from our 2SLS specification (1)–(2) estimated in a sample of all STEM applicants whose admission scores were
within 30 positions of the thresholds (as in Panel B of Table 7). Columns (B) and (D) report estimates in which the
variable of interest, Lmt, is an indicator for programs and cohorts with large quotas (the solid symbols in Figure 4).
Columns (C) and (E) report estimates in which we define Lmt as the total number of admits in each program/cohort
divided by 60 (the y-axis in Figure 4).

Regressions are at the program/cohort level with observations weighted by the number of observations (columns
B–C) and the inverse squared standard errors of the RD coefficients (columns D–E). Parentheses contain standard
errors clustered at the program/cohort level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A19. Effects of quota expansions on returns for top Univalle STEM enrollees

(A) (B) (C) (D)

Effect of quota expansion

Mean Large 60 extra Stacked
in small quota admits DD

Dependent variable cohorts (binary) (integer) (binary)

Panel A. Characteristics of top enrollees (DD coefficients)

Graduation propensity 0.403 0.018∗∗∗ 0.012∗∗ 0.022∗∗∗

(0.007) (0.005) (0.006)

Female 0.199 −0.004 −0.020 −0.008
(0.022) (0.019) (0.028)

College educated mother 0.409 0.014 −0.000 0.014
(0.045) (0.039) (0.042)

Family income > 2x min wage 0.620 −0.015 −0.030 −0.016
(0.041) (0.035) (0.044)

N (# program/cohorts) 106 106 238

Panel B. Returns to Univalle enrollment (DD coefficients)

Graduated from Univalle program 0.364 0.071 0.024 0.078
(0.045) (0.030) (0.050)

Employed in formal sector in 2017 0.772 0.043 0.046 0.036
(0.046) (0.040) (0.046)

Log monthly earnings in 2017 14.363 −0.004 0.009 0.016
(0.076) (0.060) (0.083)

N (# program/cohorts) 106 106 238

Notes: This table shows how the characteristics (Panel A) and outcomes (Panel B) of highly-ranked Univalle STEM
enrollees changed when the quotas increased. The specifications and outcome variables are similar to those in Table
7, but we use a sample of “top enrollees” in Univalle’s STEM programs. To define this sample, we first compute the
minimum rank of a student who was admitted and enrolled in each Univalle program and cohort. We then compute
the maximum of these minimum ranks across all cohorts for each program. Our top enrollee sample includes all
students who enrolled in the Univalle STEM program to which they applied and whose rank was higher than this
maximum rank. Thus this sample contains students whose admission ranks were high enough such that they could
have enrolled in any cohort of their program, regardless of the quota size.

The dependent variables are the mean characteristics (Panel A) and outcomes (Panel B) of top enrollees in each
program/cohort. Column (A) shows the mean of each dependent variable, and columns (B)–(D) show π coefficients
from equation (3). Column (B) reports estimates of π in which the variable of interest, Lmt, is an indicator for
programs and cohorts with large quotas (the solid symbols in Figure 4). Column (C) reports π coefficients in which
we define Lmt as the total number of admits in each program/cohort divided by 60 (the y-axis in Figure 4). Column
(D) is similar to column (B), but we “stack” our dataset so that the π coefficients are identified only by comparing
programs with quota expansions to those without expansions. See the notes to Table 7 for details on this stacked
specification.

Regressions are at the program/cohort level with observations weighted by the inverse squared standard errors of
the means. Parentheses contain standard errors clustered at the program/cohort level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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B. Theoretical appendix

This section presents a framework that illustrates the mechanisms through which the
returns to enrolling in a selective STEM program can vary with a student’s academic prepa-
ration.

We consider a population of high school graduates indexed by i with pre-college academic
preparation αi. Students can choose from a large number of college programs p ∈ P , where
programs are defined by both an institution and a field of study. The set P also includes
the option of not enrolling in college at all, which we denote by p = 0. For simplicity,
our framework assumes that academic preparation, αi, is unidimensional. In our empirical
analysis, we allow individuals to have different levels of preparation for different college
programs p.

We define the following potential outcomes that describe an individual’s returns to en-
rolling in each program:

• Let veip represent individual i’s potential skill value added from enrolling in program
p. This term reflects, for example, the skills an individual learns in first-year courses.
• Let gip denote individual i’s potential graduation outcome in program p. In other
words, gip = 1 for individuals who would successfully complete the program if they
enrolled and gip = 0 for individuals who would drop out.
• Let vgip represent the additional skill that individual i would gain if they graduate
from program p.

We assume veip ≥ 0 and vgip ≥ 0 for all p and that vei0 = vgi0 = 0 for the option of not attending
college. Importantly, each of these three potential outcomes can depend on an individual’s
academic preparation, αi.

After college, individuals enter a competitive labor market and earn a wage equal to
their skill. Under the above assumptions, individual i’s potential log wage from enrolling in
program p is given by:

wip = αi + veip + gipv
g
ip.(B1)

An individual’s wage is equal to αi + veip + vgip if they complete program p and it is equal to
αi + veip if they drop out of the program.

Our empirical estimates pertain to a population of “compliers” for a selective STEM
program that we denote by s. By “compliers,” we mean a group of students who would enroll
in program s if and only if they are offered admission. If these students are not admitted,
they enroll in their next-choice program that we denote by c(i) ∈ P . Next-choice programs
can vary across individuals in the complier group, and they may differ from program s in
institution and/or field of study.
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We begin by examining the average wage returns to enrolling in Univalle’s STEM program
in Section 3. We denote this return by E[wis−wi,c(i)], where the expectation is defined over
all compliers who are close to Univalle’s admission threshold. Using the wage equation (B1)
and that fact that gip is binary, this return is given by:

E[wis − wi,c(i)] = E[veis − vei,c(i)] +
{
E[vgis|gis = 1]− E[vgi,c(i)|gi,c(i) = 1]

}
E[gis]

+ E[vgi,c(i)|gi,c(i) = 1]E[gis − gi,c(i)](B2)

Our results in Sections 4–5 show how the returns to enrolling in a Univalle STEM program
vary with academic preparation. In notation this estimand is dE[wis − wi,c(i)|αi = α]/dα—
the change in the mean wage return to program s from an increase in academic preparation,
α. Using equation (B2) and letting Eα[x] ≡ E[x|αi = α] denote the expected value of a
variable x conditional on academic preparation level αi = α, this term is given by:

dEα[wis − wi,c(i)]
dα

=
dEα[veis − vei,c(i)]

dα︸ ︷︷ ︸
Term 1

+ dEα[vgis|gis = 1]
dα

Eα[gis]︸ ︷︷ ︸
Term 2

−
dEα[vgi,c(i)|gi,c(i) = 1]

dα
Eα[gi,c(i)]︸ ︷︷ ︸

Term 3

(B3)

+
{
Eα[vgis|gis = 1]− Eα[vgi,c(i)|gi,c(i) = 1]

}dEα[gis]
dα︸ ︷︷ ︸

Term 4

+ Eα[vgi,c(i)|gi,c(i) = 1]dEα[gis − gi,c(i)]
dα︸ ︷︷ ︸

Term 5

Our RD analysis of the returns to Univalle’s STEM programs yields three main results.
First, there is a positive mean earnings return to enrolling in these STEM programs for mar-
ginal admits (Table 3). Second, STEM graduation rates at Univalle increase with academic
preparation (Tables 5 and 7), while the effect of enrollment on the probability of earning any
college degree does not differ significantly by academic preparation (Table 6). Third, mean
earnings returns to enrolling in these STEM programs decrease with academic preparation
(Tables 5 and 7).

These results lead us to explore the mechanisms through which less-prepared students can
have larger earnings returns to selective STEM programs. All else equal, earnings returns
increase with the probability of graduating, but there are three reasons why returns can be
larger for less-prepared students despite lower graduation rates. We summarize these three
mechanisms in the following proposition.

Proposition. Suppose that:

(i) The skill return to graduating from program s is non-negative for all levels of academic
preparation,

Eα[vgis|gis = 1]− Eα[vgi,c(i)|gi,c(i) = 1] ≥ 0;
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(ii) Graduation rates in program s are increasing in academic preparation,
dEα[gis]
dα

> 0;

(iii) Relative graduation rates between program s and next-choice programs are unrelated
to academic preparation,

dEα[gis − gi,c(i)]
dα

= 0.

Then if the wage return to enrolling in program s is decreasing in academic preparation,
dEα[wis − wi,c(i)]/dα < 0, at least one of the following conditions must hold:

(a) There is a skill return to enrolling in program s that decreases with academic prepa-
ration,

dEα[veis − vei,c(i)]
dα

< 0;

(b) Less-prepared students choose counterfactual programs with less degree value added,

dEα[vgi,c(i)|gi,c(i) = 1]
dα

> 0;

(c) Less-prepared students have greater value added to a degree from program s,

dEα[vgis|gis = 1]
dα

< 0.

This proposition follows from inspection of equation (B3). Conditions (i) and (ii) ensure
that Terms 4 and 5 are non-negative. Mechanisms (a)–(c) determine the sign of Terms 1–3
since Eα[gis] ≥ 0 and Eα[gi,c(i)] ≥ 0.

We explore the empirical evidence on these three mechanisms in Sections 4.3–4.5 and in
Section 5.5.
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C. Empirical appendix

C.1. Data and merging. This section provides details on our data sources and merging.
Our base dataset includes lists of all applicants to Universidad del Valle’s undergraduate

programs from Fall 1999 to Spring 2004 (Univalle, 2017). These data were provided by
Univalle, and they include the program/cohort that applicants applied to, their admission
scores, and their admission decisions.

We combine the Univalle application records with three individual-level administrative
datasets provided by the Colombian government. The first dataset includes records from
Colombia’s national standardized college entrance exam, which was formerly called the
ICFES exam and is now called Saber 11 (ICFES, 2013a). The data were provided by
the agency that administers the exam and it contains all students who took the exam be-
tween 1998–2003. The ICFES exam is also used by the Colombian government for high
school accountability, so it is taken by nearly every high school graduate in the country.
The main variables of interest are individuals’ scores on each exam subject and demographic
characteristics.

The second administrative dataset includes enrollment and graduation records from the
Ministry of Education (SPADIES, 2013). These records include the institution, program of
study, and graduation outcome for students who enrolled in college between 1998–2012. The
Ministry’s records cover almost all colleges in Colombia, although it omits a few schools due
to their small size or inconsistent reporting. To describe the set of colleges that are included
in the Ministry of Education records, we use another administrative dataset from a college
exit exam called Saber Pro (ICFES, 2013b). This national exit exam is administered by
the same agency that runs the ICFES college admission exam and it became a requirement
for graduation from any higher education institution in 2009. Column (A) in Table C1
depicts the 310 colleges that have any exit exam takers in these administrative records in
2009–2011. These colleges are categorized into the Ministry of Education’s five types of
higher education institutions, which are listed in descending order of their on-time program
duration.38 Column (B) shows the number of exit exam takers per year. The majority of
exam takers are from university-level institutions, with fewer students from technical colleges.
Column (C) shows the fraction of these 310 colleges that appear in the Ministry of Education
records that we use in our analysis. These proportions are weighted by the number of exam
takers depicted in column (B). Column (C) shows that the Ministry of Education records

38 Most programs at universities require 4–5 years of study, while programs at Technical/Professional Insti-
tutes typically take 2–3 years.
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Table C1. Higher education institutions in the Ministry of Education records

(A) (B) (C)

Number of Prop.
Number of exit exam of colleges

colleges takers/year in records

University 122 134,496 1.00
University Institute 103 53,338 0.88
Technology School 3 2,041 1.00
Technology Institute 47 15,092 0.82
Technical/Professional Institute 35 11,408 0.99

Total 310 216,375 0.96

Notes: Column (A) depicts the number of colleges that have Saber Pro exit exam takers in 2009–2011 using ad-
ministrative records from the testing agency. Colleges are categorized into the Ministry of Education’s five higher
education institution types. Column (B) shows the number of 2009–2011 exam takers per year. Column (C) shows the
proportion of colleges that appear in the Ministry of Education records, where colleges are weighted by the number
of exit exam takers.

include all universities but are missing a few technical colleges.39 Overall, 96 percent of exit
exam takers attend colleges that appear in the Ministry of Education records.

The third administrative dataset includes earnings records collected by the Ministry of So-
cial Protection (PILA, 2019). The records are from the Ministry’s electronic tax record sys-
tem called Planilla Integrada de Liquidación de Aportes (PILA). Our data include monthly
earnings in 2017 for any individual who worked at a firm that was registered with the Min-
istry. Our main income measure is average monthly earnings, which we compute by dividing
total annual earnings by the number of employment months in 2017. We also use an indicator
for appearing in the PILA dataset as a measure of formal employment.

We merge the Univalle application data into the ICFES data using applicants’ full names.
Since the ICFES exam is required for admission to Univalle, most applicants appear in
the ICFES administrative dataset. Most individuals match uniquely on name, but in cases
with duplicate names we use information on ICFES exam cohort and high school location
to identify the correct match.40 Through this process, we are able to match 84 percent of
individuals in the Univalle application data to the ICFES records, as shown in columns (A)–
(B) in Table C4 below. The vast majority of non-matches occur because individuals took
the ICFES exam prior to 1998, when our records begin.41

We merge the ICFES and Ministry of Education datasets using individuals’ national ID
numbers, birth dates, and names. We define a match from this merge as observations that
39 The largest omitted institutions are the national police academy (Dirección Nacional de Escuelas) and
the Ministry of Labor’s national training service (Servicio Nacional de Aprendizaje).
40 If there are duplicates, we select the individual who took the ICFES exam prior to Univalle application
and who attended a high school in the Valle del Cauca region. If these criteria do not identify a unique
ICFES exam taker, we consider the applicant to be a non-match.
41 Many Colombians wait a year or more after high school before applying to college.
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have either: 1) the same ID number and a fuzzy name match; 2) the same birth date and a
fuzzy name match; or 3) an exact name match for a name that is unique in both records.42 39
percent of the 1998–2003 ICFES exam takers appear in the Ministry of Education records,
which is comparable to the higher education enrollment rate in Colombia during the same
time period.43 A better indicator of merge success is the percentage of college enrollees that
appear in the admission exam records because all domestic college students must take the
exam. We match 91 percent of enrollees who took the admission exam between 1998 and
2003.44

Lastly, the combined dataset from the above merges was matched to the PILA earnings
records by the Colombian statistical agency Departamento Administrativo Nacional de Es-
tadística (DANE). DANE also merged these datasets using national ID numbers, names, and
birth dates. The fraction of individuals in the 1998–2003 ICFES exam cohorts who were
matched to the 2017 earnings dataset is 56 percent. To benchmark this merge rate, we use
Colombian household survey data (GEIH) on individuals in the 1981–1987 birth cohorts with
at least a high school degree (GEIH, 2019). In this population, the fraction of individuals
who worked and had a contract for their employment was also 56 percent in 2017. This
suggests that the DANE merge identified nearly all individuals in our sample with formal
sector jobs.

C.2. Analysis sample. This section provides details on the sample we use for our analysis.
Our sample includes all of Univalle’s bachelor’s degree programs where we can identify the

effects of admission. Our initial dataset includes applicants to 74 different degree programs
from Fall 1999 to Spring 2004. We exclude 26 of these programs from our sample for one
of two reasons, as shown in Table C2. First, we exclude technical/professional programs to
focus on bachelor’s degree attainment (column C). Second, we exclude programs with fewer
than two cohorts in which any applicant was rejected (column E), which is necessary for our
RD difference-in-differences design. Excluded programs tend to attract fewer applicants and
were offered only a few times during our data period. Our sample includes the remaining 48
degree programs listed in Appendix Table C3.
42 Nearly all students in these records have national ID numbers, but Colombians change ID numbers
around age 17. Most students in the admission exam records have below-17 ID numbers (tarjeta), while
most students in the college enrollment and earnings records have above-17 ID numbers (cédula). Merging
using ID numbers alone would therefore lose a large majority of students.
43 The gross tertiary enrollment rate ranged from 23 percent to 28 percent between 1998 and 2003 (World
Bank World Development Indicators, available at: http://data.worldbank.org/country/colombia). This rate
is not directly comparable to our merge rate because not all high school aged Colombians take the ICFES
exam. About 70 percent of the secondary school aged population was enrolled in high school in this period.
Dividing the tertiary enrollment ratio by the secondary enrollment ratio gives a number roughly comparable
to our 39 percent merge rate.
44 Approximately 16 percent of students in the Ministry of Education records have missing birth dates,
which accounts for most of the non-matches.
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Table C2. Programs excluded from sample

(A) (B) (C) (D) (E) (F)

Degree Application Cohorts Total
Faculty area # Program level cohorts with rejects applied

Engineering

1 Environmental Management Technical 4 2 538
2 Food Science Technical 1 1 195
3 Forest Protection Technical 1 0 12
4 Information Systems Technical 1 1 201
5 Soil and Water Conservation Technical 4 2 253

Health 6 Prehospital Care Technical 4 2 3,014

Humanities

7 Geography Bachelor’s 2 1 97
8 Philosophy Professional 2 2 106
9 Physical Education Professional 2 1 316

10 Political Studies Bachelor’s 3 1 337
11 Recreation (night) Bachelor’s 2 1 112
12 Teaching (Biology & Chemistry) Bachelor’s 2 0 44
13 Teaching (Elem. Math, day) Bachelor’s 1 0 34
14 Teaching (Elem. Math, mixed) Bachelor’s 1 0 30
15 Teaching (Elem. N. Science, day) Bachelor’s 1 1 138
16 Teaching (Elem. N. Science, mixed) Bachelor’s 1 0 13
17 Teaching (Math & Physics, day) Bachelor’s 1 1 65
18 Teaching (Math & Physics, mixed) Bachelor’s 1 0 18
19 Teaching (Modern Languages, day) Bachelor’s 1 1 39
20 Teaching (Modern Languages, night) Bachelor’s 1 0 37
21 Teaching (Phys. Ed. & Health) Bachelor’s 2 1 111
22 Teaching (Physical Education, day) Bachelor’s 1 1 55
23 Teaching (Physical Education, mixed) Bachelor’s 2 0 43
24 Teaching (Physical Math) Bachelor’s 1 0 23
25 Teaching (Popular Education) Bachelor’s 1 1 45

Integrated arts 26 Music Bachelor’s 1 1 110

Total Bachelor’s 44 21 5,986

Notes: Columns (A)–(B) list the Univalle programs that we exclude from our sample and their faculty areas at the
university. Column (C) reports the program’s degree level (technical, professional, or bachelor’s). Column (D) shows
the total number of application cohorts from August 1999 to January 2004. Column (E) shows the number of cohorts
during this period in which any applicant was rejected. Column (F) shows the total number of applicants during this
period.

Table C4 shows the applicants to these 48 programs that we include in our sample. Column
(A) shows that our initial dataset includes 20,001 applicants to the STEM programs in our
sample (Panel A) and 29,041 applicants to other programs (Panel B). We exclude applicants
for the three reasons shown in columns (B)–(D) of Table C4. First, we drop applicants who do
not appear in our ICFES dataset (column B), as described in Section C.1. Second, we exclude
applicants in special disadvantaged admission groups who were not subject to Univalle’s
primary admission thresholds (column C). During this time period, Univalle maintained
special admission quotas for disabled, indigenous, and military applicants. Third, we drop
applicants from cohorts where no applicants were rejected (column D), which is necessary
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Table C3. Programs included in sample

(A) (B) (C) (D) (E)

Application Total Main RD
Group Faculty area # Program cohorts applied sample

STEM

Engineering

1 Agricultural Engineering 6 532 313
2 Chemical Engineering 7 1,220 478
3 Civil Engineering 7 590 405
4 Electrical Engineering 7 717 380
5 Electronic Engineering 7 1,027 407
6 Industrial Engineering 7 1,183 423
7 Materials Engineering 6 857 379
8 Mechanical Engineering 7 849 443
9 Sanitary Engineering 4 541 274
10 Statistics 5 627 254
11 Systems Engineering 5 1,758 323
12 Topographical Engineering 6 517 306

N. sciences

13 Biology 8 2,021 567
14 Chemical Technology (day) 3 883 238
15 Chemical Technology (night) 3 295 212
16 Chemistry 7 1,073 473
17 Math 3 481 259
18 Physics 9 851 565

Other

Administration

19 Accounting (day) 5 845 250
20 Accounting (night) 4 758 274
21 Business (day) 5 1,065 275
22 Business (night) 5 770 299
23 Foreign Trade 2 359 107

Health

24 Audiology 5 579 294
25 Bacteriology 5 1,657 301
26 Dentistry 5 818 286
27 Medicine 5 2,551 327
28 Nursing 5 1,149 261
29 Occupational Therapy 5 889 286
30 Physical Therapy 5 1,742 297

Humanities

31 History 4 531 190
32 Recreation 2 228 123
33 Social Work 4 1,016 233
34 Teaching (Elem. S. Science) 2 154 108
35 Teaching (Foreign Lang., day) 2 188 114
36 Teaching (Foreign Lang., night) 2 107 93
37 Teaching (History) 4 596 213
38 Teaching (Literature) 4 588 260
39 Teaching (Philosophy) 4 411 261
40 Teaching (Social Science) 3 171 139

Integrated arts

41 Architecture 6 1,346 311
42 Communication 5 356 268
43 Dramatic Arts 9 363 336
44 Teaching (Music) 5 571 332
45 Visual Arts 5 423 280

S. sciences
46 Economics 9 983 585
47 Psychology 5 1,264 323
48 Sociology 4 961 238

Total 242 39,461 14,363

Notes: Columns (A)–(B) list each Univalle program in our sample and its faculty area (see Section 2.2). Column (C) shows the
total number of application cohorts from August 1999 to January 2004. Column (D) reports the total number of applicants in
our sample and column (E) shows the number of applicants within 30 positions of the admission thresholds.
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Table C4. Analysis sample

(A) (B) (C) (D) (E) (F)

Excluded applicants

Missing Special No
All ICFES admission rejected Full RD

applicants scores group applicants sample sample

Panel A. STEM applicants

Ability percentile 0.783 0.811 0.838 0.780 0.842
Age 18.713 19.544 18.997 18.686 18.947
College educated father 0.426 0.355 0.454 0.427 0.440
College educated mother 0.361 0.330 0.358 0.361 0.373
Family income > 2x min wage 0.576 0.470 0.612 0.576 0.599
Female 0.357 0.274 0.312 0.360 0.319

N 20,001 3,077 310 592 16,022 6,699

Panel B. Other applicants

Ability percentile 0.735 0.778 0.846 0.733 0.810
Age 18.923 19.735 20.596 18.879 19.353
College educated father 0.408 0.431 0.370 0.408 0.424
College educated mother 0.344 0.375 0.300 0.344 0.354
Family income > 2x min wage 0.560 0.498 0.609 0.560 0.589
Female 0.637 0.539 0.541 0.641 0.588

N 29,041 4,746 462 394 23,439 7,664

Notes: Column (A) shows the total number of applicants to the 48 Univalle programs in our sample (see Appendix
Table C3). Column (B) shows the number of applicants who do not appear in the ICFES dataset. Column (C) lists
the number of students who were admitted through special quotas for disadvantaged groups. Column (D) shows
the number of applicants to program/cohort pairs in which no applicants were rejected. Column (E) shows our full
analysis sample, which is equal to column (A) minus the applicants in columns (B)–(D). Column (F) shows the subset
of applicants from column (E) who are within 30 positions of the admission threshold in their application pool.

Panel A includes applicants to Univalle’s STEM programs and Panel B includes applicants to non-STEM programs.
Demographic characteristics are not reported in column (B) because these variables come from the ICFES dataset.

for our RD strategy. After these restrictions, our sample includes 16,022 STEM applicants
and 23,439 applicants to other programs.

Most of our regressions focus on the subset of applicants whose admission scores are within
h ranks of the tracking threshold. Our benchmark model uses h = 30, which is roughly the
mean of the Calonico et al. (2014) bandwidths across all dependent variables. Column
(F) shows that this RD sample includes 6,699 STEM applicants and 7,664 applicants to
other programs. Applicants in our RD sample tend to have higher pre-college ability than
those in the full sample. In addition, these applicants come from slightly more advantaged
socioeconomic backgrounds, and are less likely to identify as female.
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